可解释的人工智能设想的网络威胁搜索安全机制

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Security and Privacy Pub Date : 2023-03-16 DOI:10.1002/spy2.312
Pankaj Kumar, M. Wazid, D. P. Singh, Jaskaran Singh, A. Das, Youngho Park, Joel J. P. C. Rodrigues
{"title":"可解释的人工智能设想的网络威胁搜索安全机制","authors":"Pankaj Kumar, M. Wazid, D. P. Singh, Jaskaran Singh, A. Das, Youngho Park, Joel J. P. C. Rodrigues","doi":"10.1002/spy2.312","DOIUrl":null,"url":null,"abstract":"Cyber threat hunting proactively searches for cyber threats, which are undetected by the traditional defense mechanisms. It scans deep to identify malicious programs (ie, malware) that escape from detection. It is important because sophisticated cyber threats can bypass the cyber security mechanisms. The performance of the cyber threat hunting can be improved through artificial intelligence (AI), especially, explainable AI (XAI), which adds trust component to the cyber threat hunting process. Due to the inclusion of XAI, the security experts get the full explanations of the detected threats as the working of the detection model in XAI is known. Information, like, which one is a threat, how it has been detected, and why it has been detected, can be obtained very easily due to the inclusion of XAI in the cyber threat hunting. Therefore, an XAI‐envisioned mechanism for cyber threat hunting has been proposed (in short, XAISM‐CTH). The network and threat models of XAISM‐CTH are designed and discussed. The conducted security analysis proves the security of XAISM‐CTH against various potential attacks. XAISM‐CTH also performs better than the other existing schemes. At the end, a practical implementation of XAISM‐CTH has been provided to observe its impact on the performance of the system.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence envisioned security mechanism for cyber threat hunting\",\"authors\":\"Pankaj Kumar, M. Wazid, D. P. Singh, Jaskaran Singh, A. Das, Youngho Park, Joel J. P. C. Rodrigues\",\"doi\":\"10.1002/spy2.312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber threat hunting proactively searches for cyber threats, which are undetected by the traditional defense mechanisms. It scans deep to identify malicious programs (ie, malware) that escape from detection. It is important because sophisticated cyber threats can bypass the cyber security mechanisms. The performance of the cyber threat hunting can be improved through artificial intelligence (AI), especially, explainable AI (XAI), which adds trust component to the cyber threat hunting process. Due to the inclusion of XAI, the security experts get the full explanations of the detected threats as the working of the detection model in XAI is known. Information, like, which one is a threat, how it has been detected, and why it has been detected, can be obtained very easily due to the inclusion of XAI in the cyber threat hunting. Therefore, an XAI‐envisioned mechanism for cyber threat hunting has been proposed (in short, XAISM‐CTH). The network and threat models of XAISM‐CTH are designed and discussed. The conducted security analysis proves the security of XAISM‐CTH against various potential attacks. XAISM‐CTH also performs better than the other existing schemes. At the end, a practical implementation of XAISM‐CTH has been provided to observe its impact on the performance of the system.\",\"PeriodicalId\":29939,\"journal\":{\"name\":\"Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spy2.312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainable artificial intelligence envisioned security mechanism for cyber threat hunting
Cyber threat hunting proactively searches for cyber threats, which are undetected by the traditional defense mechanisms. It scans deep to identify malicious programs (ie, malware) that escape from detection. It is important because sophisticated cyber threats can bypass the cyber security mechanisms. The performance of the cyber threat hunting can be improved through artificial intelligence (AI), especially, explainable AI (XAI), which adds trust component to the cyber threat hunting process. Due to the inclusion of XAI, the security experts get the full explanations of the detected threats as the working of the detection model in XAI is known. Information, like, which one is a threat, how it has been detected, and why it has been detected, can be obtained very easily due to the inclusion of XAI in the cyber threat hunting. Therefore, an XAI‐envisioned mechanism for cyber threat hunting has been proposed (in short, XAISM‐CTH). The network and threat models of XAISM‐CTH are designed and discussed. The conducted security analysis proves the security of XAISM‐CTH against various potential attacks. XAISM‐CTH also performs better than the other existing schemes. At the end, a practical implementation of XAISM‐CTH has been provided to observe its impact on the performance of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
80
期刊最新文献
Physically secure and privacy‐preserving blockchain enabled authentication scheme for internet of drones A new authentication scheme for dynamic charging system of electric vehicles in fog environment Enhancing android application security: A novel approach using DroidXGB for malware detection based on permission analysis Designing access control security protocol for Industry 4.0 using Blockchain‐as‐a‐Service An efficient lightweight authentication scheme for dew‐assisted IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1