组学研究进展及同时提高大豆籽油和蛋白质含量的综合方法

IF 6 2区 生物学 Q1 PLANT SCIENCES Critical Reviews in Plant Sciences Pub Date : 2021-08-10 DOI:10.1080/07352689.2021.1954778
Virender Kumar, Sanskriti Vats, S. Kumawat, Ashita Bisht, Vacha D. Bhatt, S. M. Shivaraj, Gunashri Padalkar, V. Goyal, S. Zargar, S. Gupta, Giriraj Kumawat, S. Chandra, V. Chalam, M. Ratnaparkhe, B. Gill, M. Jean, G. Patil, T. Vuong, I. Rajcan, R. Deshmukh, F. Belzile, T. Sharma, H. Nguyen, H. Sonah
{"title":"组学研究进展及同时提高大豆籽油和蛋白质含量的综合方法","authors":"Virender Kumar, Sanskriti Vats, S. Kumawat, Ashita Bisht, Vacha D. Bhatt, S. M. Shivaraj, Gunashri Padalkar, V. Goyal, S. Zargar, S. Gupta, Giriraj Kumawat, S. Chandra, V. Chalam, M. Ratnaparkhe, B. Gill, M. Jean, G. Patil, T. Vuong, I. Rajcan, R. Deshmukh, F. Belzile, T. Sharma, H. Nguyen, H. Sonah","doi":"10.1080/07352689.2021.1954778","DOIUrl":null,"url":null,"abstract":"Abstract Genetic improvement of soybean, one of the major crops providing edible oil and protein-rich food, is important to ensure balanced nutrition for the growing world population. To make soybean cultivation more rewarding, an increase in seed oil and protein content is most desirable. Here, a critical review of the efforts employed over a half-century to accomplish the improvement of soybean oil and protein content has been presented. Many studies have used diverse parental lines to map and characterize quantitative trait loci (QTL)/genes regulating these two essential traits. Here, we highlighted such genomic loci that were consistently identified with different mapping approaches, like QTL mapping, genome-wide association studies (GWAS), and meta-QTL analysis. In addition, the information generated through efforts utilizing omics approaches, such as genomics, transcriptomics, and proteomics has also been compiled to anticipate the molecular mechanism. Several innovative approaches like multi-parental mapping, induced mutagenesis, genomic selection, transgenics, and genome-editing have been discussed in terms of effective utilization of technological advances to improve the oil and protein content in soybean. Information provided here will be helpful for better understanding and designing an effective strategy for simultaneous improvement in seed oil and protein content in soybean.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"40 1","pages":"398 - 421"},"PeriodicalIF":6.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.)\",\"authors\":\"Virender Kumar, Sanskriti Vats, S. Kumawat, Ashita Bisht, Vacha D. Bhatt, S. M. Shivaraj, Gunashri Padalkar, V. Goyal, S. Zargar, S. Gupta, Giriraj Kumawat, S. Chandra, V. Chalam, M. Ratnaparkhe, B. Gill, M. Jean, G. Patil, T. Vuong, I. Rajcan, R. Deshmukh, F. Belzile, T. Sharma, H. Nguyen, H. Sonah\",\"doi\":\"10.1080/07352689.2021.1954778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Genetic improvement of soybean, one of the major crops providing edible oil and protein-rich food, is important to ensure balanced nutrition for the growing world population. To make soybean cultivation more rewarding, an increase in seed oil and protein content is most desirable. Here, a critical review of the efforts employed over a half-century to accomplish the improvement of soybean oil and protein content has been presented. Many studies have used diverse parental lines to map and characterize quantitative trait loci (QTL)/genes regulating these two essential traits. Here, we highlighted such genomic loci that were consistently identified with different mapping approaches, like QTL mapping, genome-wide association studies (GWAS), and meta-QTL analysis. In addition, the information generated through efforts utilizing omics approaches, such as genomics, transcriptomics, and proteomics has also been compiled to anticipate the molecular mechanism. Several innovative approaches like multi-parental mapping, induced mutagenesis, genomic selection, transgenics, and genome-editing have been discussed in terms of effective utilization of technological advances to improve the oil and protein content in soybean. Information provided here will be helpful for better understanding and designing an effective strategy for simultaneous improvement in seed oil and protein content in soybean.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":\"40 1\",\"pages\":\"398 - 421\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2021.1954778\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2021.1954778","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 12

摘要

摘要大豆是提供食用油和富含蛋白质食物的主要作物之一,对其进行遗传改良对于保证不断增长的世界人口的营养均衡具有重要意义。为了使大豆种植更有回报,最理想的是增加种子油和蛋白质含量。在这里,对半个多世纪以来为实现豆油和蛋白质含量的提高所做的努力进行了批判性的回顾。许多研究使用不同的亲本系来定位和表征这两个重要性状的数量性状位点/基因。在这里,我们强调了这些基因组位点是通过不同的定位方法,如QTL定位、全基因组关联研究(GWAS)和meta-QTL分析一致确定的。此外,利用基因组学、转录组学和蛋白质组学等组学方法所产生的信息也被用于预测分子机制。本文讨论了多亲本定位、诱导诱变、基因组选择、转基因和基因组编辑等创新方法,以有效利用技术进步提高大豆的油脂和蛋白质含量。本文所提供的信息将有助于更好地了解和设计同时提高大豆籽油和蛋白质含量的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.)
Abstract Genetic improvement of soybean, one of the major crops providing edible oil and protein-rich food, is important to ensure balanced nutrition for the growing world population. To make soybean cultivation more rewarding, an increase in seed oil and protein content is most desirable. Here, a critical review of the efforts employed over a half-century to accomplish the improvement of soybean oil and protein content has been presented. Many studies have used diverse parental lines to map and characterize quantitative trait loci (QTL)/genes regulating these two essential traits. Here, we highlighted such genomic loci that were consistently identified with different mapping approaches, like QTL mapping, genome-wide association studies (GWAS), and meta-QTL analysis. In addition, the information generated through efforts utilizing omics approaches, such as genomics, transcriptomics, and proteomics has also been compiled to anticipate the molecular mechanism. Several innovative approaches like multi-parental mapping, induced mutagenesis, genomic selection, transgenics, and genome-editing have been discussed in terms of effective utilization of technological advances to improve the oil and protein content in soybean. Information provided here will be helpful for better understanding and designing an effective strategy for simultaneous improvement in seed oil and protein content in soybean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.90
自引率
1.40%
发文量
15
审稿时长
>12 weeks
期刊介绍: Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.
期刊最新文献
Advances in Antisense Oligo Technology for Sustainable Crop Protection Role of Exogenous Melatonin in Plant Biotechnology: Physiological and Applied Aspects Integration of the Plant-Specific PLATZ Transcription Factors into Gene Regulatory Networks Controlling Developmental Processes Plant SABATH Methyltransferases: Diverse Functions, Unusual Reaction Mechanisms and Complex Evolution MicroRNA: A Mobile Signal Mediating Information Exchange within and beyond Plant Organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1