大气二氧化碳浓度升高对葡萄葡萄园系统的影响

IF 2.2 3区 农林科学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY American Journal of Enology and Viticulture Pub Date : 2021-11-11 DOI:10.5344/ajev.2021.21029
Molly Clemens, Alessandra Zuniga, W. Oechel
{"title":"大气二氧化碳浓度升高对葡萄葡萄园系统的影响","authors":"Molly Clemens, Alessandra Zuniga, W. Oechel","doi":"10.5344/ajev.2021.21029","DOIUrl":null,"url":null,"abstract":"Global atmospheric carbon dioxide concentrations will continue increasing throughout the next century, with profound effects on agriculture. The literature concerning the effects of climate change on viticulture has largely focused on the isolated effects of variables such as temperature and soil water deficit. Likewise, the research on the effects of elevated atmospheric CO2 on grapevines is stunted at the categorical level, chiefly because of the difficulty of experimentally controlling the gaseous environment in situ for the years necessary to replicate the vineyard system in a future climate condition. Despite numerous studies on the short-term influence of environmental and cultural factors on grapevine development at elevated CO2, the long-term effects remain poorly understood. The lack of field based elevated CO2 experiments in the United States is an added challenge to predicting viticultural changes, particularly in California. This review focuses on the systemic effect of atmospheric CO2 on Vitis vinifera, synthesizing physiological, phenological, and plant-pest interactions. Major findings from this synthesis inform of a predicted increase in pest pressure, advanced phenological timing, transient increase in water use efficiency for grapevine, and changes in grape berry chemistry. While water use efficiency is highly desirable, the prediction for current winegrape growing regions is a transient increase in water use efficiency subsequently limited by a lack of available soil water. Grapevine is influenced by the negative synergistic effects of heat, drought, and elevated CO2, which will alter cultural practices including harvest and pest and disease control, with downstream effects on winemaking. Several options for adaptation are discussed including leaf removal, planting alternative varieties, and selective breeding of new varieties.","PeriodicalId":7461,"journal":{"name":"American Journal of Enology and Viticulture","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Elevated Atmospheric Carbon Dioxide on the Vineyard System of Vitis vinifera: A Review\",\"authors\":\"Molly Clemens, Alessandra Zuniga, W. Oechel\",\"doi\":\"10.5344/ajev.2021.21029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global atmospheric carbon dioxide concentrations will continue increasing throughout the next century, with profound effects on agriculture. The literature concerning the effects of climate change on viticulture has largely focused on the isolated effects of variables such as temperature and soil water deficit. Likewise, the research on the effects of elevated atmospheric CO2 on grapevines is stunted at the categorical level, chiefly because of the difficulty of experimentally controlling the gaseous environment in situ for the years necessary to replicate the vineyard system in a future climate condition. Despite numerous studies on the short-term influence of environmental and cultural factors on grapevine development at elevated CO2, the long-term effects remain poorly understood. The lack of field based elevated CO2 experiments in the United States is an added challenge to predicting viticultural changes, particularly in California. This review focuses on the systemic effect of atmospheric CO2 on Vitis vinifera, synthesizing physiological, phenological, and plant-pest interactions. Major findings from this synthesis inform of a predicted increase in pest pressure, advanced phenological timing, transient increase in water use efficiency for grapevine, and changes in grape berry chemistry. While water use efficiency is highly desirable, the prediction for current winegrape growing regions is a transient increase in water use efficiency subsequently limited by a lack of available soil water. Grapevine is influenced by the negative synergistic effects of heat, drought, and elevated CO2, which will alter cultural practices including harvest and pest and disease control, with downstream effects on winemaking. Several options for adaptation are discussed including leaf removal, planting alternative varieties, and selective breeding of new varieties.\",\"PeriodicalId\":7461,\"journal\":{\"name\":\"American Journal of Enology and Viticulture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Enology and Viticulture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5344/ajev.2021.21029\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Enology and Viticulture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5344/ajev.2021.21029","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

全球大气中的二氧化碳浓度将在下个世纪继续增加,对农业产生深远影响。关于气候变化对葡萄栽培影响的文献主要集中在温度和土壤水分亏缺等变量的孤立影响上。同样,关于大气中二氧化碳浓度升高对葡萄树影响的研究在分类水平上受到阻碍,主要是因为在未来气候条件下复制葡萄园系统所必需的多年实验控制气体环境的困难。尽管有大量研究表明环境和文化因素在二氧化碳浓度升高的情况下对葡萄生长的短期影响,但长期影响仍知之甚少。美国缺乏基于田间的二氧化碳升高实验,这对预测葡萄栽培变化是一个额外的挑战,尤其是在加州。本文综述了大气CO2对葡萄(Vitis vinifera)生理、物候和病虫害相互作用的影响。该综合研究的主要发现包括虫害压力的预测增加、物候时间的提前、葡萄植株水分利用效率的短暂提高以及葡萄果实化学成分的变化。虽然水利用效率是非常理想的,但对当前酿酒葡萄种植区的预测是水利用效率的短暂提高,随后受到可用土壤水缺乏的限制。葡萄藤受到高温、干旱和二氧化碳升高的负面协同效应的影响,这将改变包括收获和病虫害控制在内的文化习俗,并对酿酒产生下游影响。讨论了几种适应方法,包括除叶、种植替代品种和选育新品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Elevated Atmospheric Carbon Dioxide on the Vineyard System of Vitis vinifera: A Review
Global atmospheric carbon dioxide concentrations will continue increasing throughout the next century, with profound effects on agriculture. The literature concerning the effects of climate change on viticulture has largely focused on the isolated effects of variables such as temperature and soil water deficit. Likewise, the research on the effects of elevated atmospheric CO2 on grapevines is stunted at the categorical level, chiefly because of the difficulty of experimentally controlling the gaseous environment in situ for the years necessary to replicate the vineyard system in a future climate condition. Despite numerous studies on the short-term influence of environmental and cultural factors on grapevine development at elevated CO2, the long-term effects remain poorly understood. The lack of field based elevated CO2 experiments in the United States is an added challenge to predicting viticultural changes, particularly in California. This review focuses on the systemic effect of atmospheric CO2 on Vitis vinifera, synthesizing physiological, phenological, and plant-pest interactions. Major findings from this synthesis inform of a predicted increase in pest pressure, advanced phenological timing, transient increase in water use efficiency for grapevine, and changes in grape berry chemistry. While water use efficiency is highly desirable, the prediction for current winegrape growing regions is a transient increase in water use efficiency subsequently limited by a lack of available soil water. Grapevine is influenced by the negative synergistic effects of heat, drought, and elevated CO2, which will alter cultural practices including harvest and pest and disease control, with downstream effects on winemaking. Several options for adaptation are discussed including leaf removal, planting alternative varieties, and selective breeding of new varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Enology and Viticulture
American Journal of Enology and Viticulture 农林科学-生物工程与应用微生物
CiteScore
3.80
自引率
10.50%
发文量
27
审稿时长
12-24 weeks
期刊介绍: The American Journal of Enology and Viticulture (AJEV), published quarterly, is an official journal of the American Society for Enology and Viticulture (ASEV) and is the premier journal in the English language dedicated to scientific research on winemaking and grapegrowing. AJEV publishes full-length research papers, literature reviews, research notes, and technical briefs on various aspects of enology and viticulture, including wine chemistry, sensory science, process engineering, wine quality assessments, microbiology, methods development, plant pathogenesis, diseases and pests of grape, rootstock and clonal evaluation, effect of field practices, and grape genetics and breeding. All papers are peer reviewed, and authorship of papers is not limited to members of ASEV. The science editor, along with the viticulture, enology, and associate editors, are drawn from academic and research institutions worldwide and guide the content of the Journal.
期刊最新文献
Red Wine Fermentation Alters Grape Seed Morphology and Internal Porosity Phenological Stage and Tissue Type of Grapevines Impact Concentrations and Variability of Mineral Nutrients Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size Gibberellic Acid for Table Grape Inflorescence Elongation: Is It Worth It? Consumer Hedonic Testing and Chemical Analysis of Iowa Wines Made from Five Cold-Hardy Interspecific Grape Varieties (Vitisspp.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1