K. Hagymási, K. Szentmihályi, Z. May, É. Sárdi, H. Fébel, I. Kocsis, A. Blázovics
{"title":"高脂血症动物模型短期补充富含多酚改变元素稳态和跨甲基能力","authors":"K. Hagymási, K. Szentmihályi, Z. May, É. Sárdi, H. Fébel, I. Kocsis, A. Blázovics","doi":"10.1556/066.2022.00053","DOIUrl":null,"url":null,"abstract":"\n Non-alcoholic fatty liver disease is one of the most common chronic liver diseases with unclarified pathomechanism and without evidence-proven therapy. Dietary polyphenols, targeting oxidative stress, are at the center of investigations. Our aim was to examine the effects of a polyphenol rich extract on metal element homeostasis and transmethylation ability in non-alcoholic fatty liver model. A ten-day rat model was used (control group, hyperlipidemic group with fat-rich diet, hyperlipidemic group with fat-rich diet and polyphenol supplementation, N = 8 in each group). The hyperlipidemic diet increased the concentration of the majority of the elements with significantly higher contents of B, Co, Cu, Fe, Mg, Mn, Na, Ni, P, Se, Si, and Zn in the liver. Further elevation of Al, Pb, and Sn concentrations could be observed in polyphenol supplemented animals. The polyphenol supplement unexpectedly decreased the transmethylation ability of the liver (132.00 vs. 114.15 vs. 92.25 HCHO μg g−1) further. The results emphasize the possible role of altered metal and non-metal element concentrations and decreased transmethylation ability in the pathomechanism of fatty liver disease. Dietary supplementation with natural compounds may have undesirable effect as well, there is the necessity to improve the efficacy of polyphenol formulations because of their low oral bioavailability.","PeriodicalId":6908,"journal":{"name":"Acta Alimentaria","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered element homeostasis and transmethylation ability in short-term polyphenol rich supplementation in hyperlipidemic animal model\",\"authors\":\"K. Hagymási, K. Szentmihályi, Z. May, É. Sárdi, H. Fébel, I. Kocsis, A. Blázovics\",\"doi\":\"10.1556/066.2022.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Non-alcoholic fatty liver disease is one of the most common chronic liver diseases with unclarified pathomechanism and without evidence-proven therapy. Dietary polyphenols, targeting oxidative stress, are at the center of investigations. Our aim was to examine the effects of a polyphenol rich extract on metal element homeostasis and transmethylation ability in non-alcoholic fatty liver model. A ten-day rat model was used (control group, hyperlipidemic group with fat-rich diet, hyperlipidemic group with fat-rich diet and polyphenol supplementation, N = 8 in each group). The hyperlipidemic diet increased the concentration of the majority of the elements with significantly higher contents of B, Co, Cu, Fe, Mg, Mn, Na, Ni, P, Se, Si, and Zn in the liver. Further elevation of Al, Pb, and Sn concentrations could be observed in polyphenol supplemented animals. The polyphenol supplement unexpectedly decreased the transmethylation ability of the liver (132.00 vs. 114.15 vs. 92.25 HCHO μg g−1) further. The results emphasize the possible role of altered metal and non-metal element concentrations and decreased transmethylation ability in the pathomechanism of fatty liver disease. Dietary supplementation with natural compounds may have undesirable effect as well, there is the necessity to improve the efficacy of polyphenol formulations because of their low oral bioavailability.\",\"PeriodicalId\":6908,\"journal\":{\"name\":\"Acta Alimentaria\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Alimentaria\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1556/066.2022.00053\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Alimentaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/066.2022.00053","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Altered element homeostasis and transmethylation ability in short-term polyphenol rich supplementation in hyperlipidemic animal model
Non-alcoholic fatty liver disease is one of the most common chronic liver diseases with unclarified pathomechanism and without evidence-proven therapy. Dietary polyphenols, targeting oxidative stress, are at the center of investigations. Our aim was to examine the effects of a polyphenol rich extract on metal element homeostasis and transmethylation ability in non-alcoholic fatty liver model. A ten-day rat model was used (control group, hyperlipidemic group with fat-rich diet, hyperlipidemic group with fat-rich diet and polyphenol supplementation, N = 8 in each group). The hyperlipidemic diet increased the concentration of the majority of the elements with significantly higher contents of B, Co, Cu, Fe, Mg, Mn, Na, Ni, P, Se, Si, and Zn in the liver. Further elevation of Al, Pb, and Sn concentrations could be observed in polyphenol supplemented animals. The polyphenol supplement unexpectedly decreased the transmethylation ability of the liver (132.00 vs. 114.15 vs. 92.25 HCHO μg g−1) further. The results emphasize the possible role of altered metal and non-metal element concentrations and decreased transmethylation ability in the pathomechanism of fatty liver disease. Dietary supplementation with natural compounds may have undesirable effect as well, there is the necessity to improve the efficacy of polyphenol formulations because of their low oral bioavailability.
期刊介绍:
Acta Alimentaria publishes original papers and reviews on food science (physics, physical chemistry, chemistry, analysis, biology, microbiology, enzymology, engineering, instrumentation, automation and economics of foods, food production and food technology, food quality, post-harvest treatments, food safety and nutrition).