治疗性抗体暴露于促氧化剂后的功能变化

IF 3 Q3 IMMUNOLOGY Antibodies Pub Date : 2022-02-02 DOI:10.3390/antib11010011
M. Lecerf, Robin V. Lacombe, Alexia Kanyavuz, J. Dimitrov
{"title":"治疗性抗体暴露于促氧化剂后的功能变化","authors":"M. Lecerf, Robin V. Lacombe, Alexia Kanyavuz, J. Dimitrov","doi":"10.3390/antib11010011","DOIUrl":null,"url":null,"abstract":"Therapeutic monoclonal antibodies have exerted a transformative impact on clinical practice in last two decades. However, development of a therapeutic antibody remains a complex process. Various physiochemical and functional liabilities can compromise the production or the therapeutic efficacy of antibodies. One of these liabilities is the susceptibility to oxidation. In the present study, we portrayed an oxidation-dependent vulnerability of immunoglobulins that can be of concern for therapeutic antibodies. By using a library of 119 monoclonal IgG1 molecules, containing variable domain matching clinical-stage antibodies, we demonstrated that a substantial number of these molecules acquired antigen-binding polyreactivity upon exposure to ferrous ions. Statistical analyses revealed that the potential for induction of polyreactivity by the redox-active metal ions correlated with a higher number of somatic mutations in V genes encoding variable domains of heavy and light immunoglobulin chains. Moreover, the sensitive antibodies used with biased frequencies particular V gene families encoding variable domains of their light chains. Besides the exposure to ferrous ions the induction of polyreactivity of therapeutic antibodies occurred after contact with an unrelated pro-oxidative substance—hypochlorite ions. Our data also revealed that induction of polyreactivity by pro-oxidative agents did not impact the binding of antibodies to their cognate antigens. The results from this study may contribute for better selection of antibody therapeutics with suitable developability profiles.","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Functional Changes of Therapeutic Antibodies upon Exposure to Pro-Oxidative Agents\",\"authors\":\"M. Lecerf, Robin V. Lacombe, Alexia Kanyavuz, J. Dimitrov\",\"doi\":\"10.3390/antib11010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Therapeutic monoclonal antibodies have exerted a transformative impact on clinical practice in last two decades. However, development of a therapeutic antibody remains a complex process. Various physiochemical and functional liabilities can compromise the production or the therapeutic efficacy of antibodies. One of these liabilities is the susceptibility to oxidation. In the present study, we portrayed an oxidation-dependent vulnerability of immunoglobulins that can be of concern for therapeutic antibodies. By using a library of 119 monoclonal IgG1 molecules, containing variable domain matching clinical-stage antibodies, we demonstrated that a substantial number of these molecules acquired antigen-binding polyreactivity upon exposure to ferrous ions. Statistical analyses revealed that the potential for induction of polyreactivity by the redox-active metal ions correlated with a higher number of somatic mutations in V genes encoding variable domains of heavy and light immunoglobulin chains. Moreover, the sensitive antibodies used with biased frequencies particular V gene families encoding variable domains of their light chains. Besides the exposure to ferrous ions the induction of polyreactivity of therapeutic antibodies occurred after contact with an unrelated pro-oxidative substance—hypochlorite ions. Our data also revealed that induction of polyreactivity by pro-oxidative agents did not impact the binding of antibodies to their cognate antigens. The results from this study may contribute for better selection of antibody therapeutics with suitable developability profiles.\",\"PeriodicalId\":8188,\"journal\":{\"name\":\"Antibodies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/antib11010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib11010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

治疗性单克隆抗体在过去二十年中对临床实践产生了变革性的影响。然而,治疗性抗体的开发仍然是一个复杂的过程。各种生理化学和功能缺陷会损害抗体的产生或治疗效果。其中一个缺点是易氧化。在目前的研究中,我们描绘了免疫球蛋白的氧化依赖性脆弱性,可以关注治疗性抗体。通过使用包含可变结构域匹配临床阶段抗体的119个单克隆IgG1分子文库,我们证明了大量这些分子在暴露于亚铁离子时获得抗原结合的多反应性。统计分析显示,氧化还原活性金属离子诱导多反应性的潜力与编码重、轻免疫球蛋白链可变结构域的V基因的较高体细胞突变数量相关。此外,敏感抗体使用偏频特定的V基因家族编码其轻链的可变结构域。除了暴露于亚铁离子外,治疗性抗体的多反应性发生在与不相关的促氧化物质-次氯酸盐离子接触后。我们的数据还显示,由促氧化剂诱导的多反应性并不影响抗体与其同源抗原的结合。本研究结果可能有助于更好地选择具有合适发展概况的抗体治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional Changes of Therapeutic Antibodies upon Exposure to Pro-Oxidative Agents
Therapeutic monoclonal antibodies have exerted a transformative impact on clinical practice in last two decades. However, development of a therapeutic antibody remains a complex process. Various physiochemical and functional liabilities can compromise the production or the therapeutic efficacy of antibodies. One of these liabilities is the susceptibility to oxidation. In the present study, we portrayed an oxidation-dependent vulnerability of immunoglobulins that can be of concern for therapeutic antibodies. By using a library of 119 monoclonal IgG1 molecules, containing variable domain matching clinical-stage antibodies, we demonstrated that a substantial number of these molecules acquired antigen-binding polyreactivity upon exposure to ferrous ions. Statistical analyses revealed that the potential for induction of polyreactivity by the redox-active metal ions correlated with a higher number of somatic mutations in V genes encoding variable domains of heavy and light immunoglobulin chains. Moreover, the sensitive antibodies used with biased frequencies particular V gene families encoding variable domains of their light chains. Besides the exposure to ferrous ions the induction of polyreactivity of therapeutic antibodies occurred after contact with an unrelated pro-oxidative substance—hypochlorite ions. Our data also revealed that induction of polyreactivity by pro-oxidative agents did not impact the binding of antibodies to their cognate antigens. The results from this study may contribute for better selection of antibody therapeutics with suitable developability profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antibodies
Antibodies IMMUNOLOGY-
CiteScore
7.10
自引率
6.40%
发文量
68
审稿时长
11 weeks
期刊介绍: Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.
期刊最新文献
Oral Paraneoplastic Pemphigus: A Scoping Review on Pathogenetic Mechanisms and Histo-Serological Profile. Enhancing Tumor Immunity with IL-12 and PD-1 Blockade: A Strategy for Inducing Robust Central Memory T Cell Responses in Resistant Cancer Model. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link. Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1