β-方石石表面气-表面相互作用的分子动力学研究

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Spacecraft and Rockets Pub Date : 2023-08-02 DOI:10.2514/1.a35596
Srujan K. Naspoori, A. Appar, Rakesh Kumar, Kishore K. Kammara
{"title":"β-方石石表面气-表面相互作用的分子动力学研究","authors":"Srujan K. Naspoori, A. Appar, Rakesh Kumar, Kishore K. Kammara","doi":"10.2514/1.a35596","DOIUrl":null,"url":null,"abstract":"In the present work, nonreactive gas–surface interactions between nitrogen molecules and a [Formula: see text]-cristobalite surface are analyzed using the molecular dynamics framework. A sampling method is employed to perform trajectory calculations, and the tangential momentum accommodation coefficient is computed. The credibility of the reactive force field potential to model [Formula: see text] cristobalite is investigated, and the effect of the surface and gas temperatures on the tangential momentum accommodation coefficient is studied in detail. The obtained value of the tangential momentum accommodation coefficient (from molecular dynamics analysis) is used as an input parameter in the Maxwell gas–surface interaction model using the direct simulation Monte Carlo method to investigate the surface heat flux on the nose region of a model reentry vehicle. The computed heat-flux results obtained using a molecular-dynamics-derived accommodation coefficient are found to be in excellent agreement with the experimental data.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Study of Gas–Surface Interactions on β-Cristobalite Surface\",\"authors\":\"Srujan K. Naspoori, A. Appar, Rakesh Kumar, Kishore K. Kammara\",\"doi\":\"10.2514/1.a35596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, nonreactive gas–surface interactions between nitrogen molecules and a [Formula: see text]-cristobalite surface are analyzed using the molecular dynamics framework. A sampling method is employed to perform trajectory calculations, and the tangential momentum accommodation coefficient is computed. The credibility of the reactive force field potential to model [Formula: see text] cristobalite is investigated, and the effect of the surface and gas temperatures on the tangential momentum accommodation coefficient is studied in detail. The obtained value of the tangential momentum accommodation coefficient (from molecular dynamics analysis) is used as an input parameter in the Maxwell gas–surface interaction model using the direct simulation Monte Carlo method to investigate the surface heat flux on the nose region of a model reentry vehicle. The computed heat-flux results obtained using a molecular-dynamics-derived accommodation coefficient are found to be in excellent agreement with the experimental data.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35596\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35596","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,使用分子动力学框架分析了氮分子和[公式:见正文]-方石英表面之间的非反应性气体-表面相互作用。采用采样方法进行轨迹计算,并计算切线动量调节系数。研究了反作用力场势对模型[公式:见正文]方石英的可信度,并详细研究了表面温度和气体温度对切向动量调节系数的影响。使用直接模拟蒙特卡罗方法,将获得的切向动量调节系数值(来自分子动力学分析)用作Maxwell气表面相互作用模型的输入参数,以研究模型再入飞行器机头区域的表面热通量。使用分子动力学导出的调节系数获得的计算热通量结果与实验数据非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Dynamics Study of Gas–Surface Interactions on β-Cristobalite Surface
In the present work, nonreactive gas–surface interactions between nitrogen molecules and a [Formula: see text]-cristobalite surface are analyzed using the molecular dynamics framework. A sampling method is employed to perform trajectory calculations, and the tangential momentum accommodation coefficient is computed. The credibility of the reactive force field potential to model [Formula: see text] cristobalite is investigated, and the effect of the surface and gas temperatures on the tangential momentum accommodation coefficient is studied in detail. The obtained value of the tangential momentum accommodation coefficient (from molecular dynamics analysis) is used as an input parameter in the Maxwell gas–surface interaction model using the direct simulation Monte Carlo method to investigate the surface heat flux on the nose region of a model reentry vehicle. The computed heat-flux results obtained using a molecular-dynamics-derived accommodation coefficient are found to be in excellent agreement with the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
期刊最新文献
A systematic review of studies on resilience and risk and protective factors for health among refugee children in Nordic countries. Bayesian Reliability Analysis of the Enhanced Multimission Radioisotope Thermoelectric Generator Clarification: Seeded Hydrogen in Mars Transfer Vehicles Using Nuclear Thermal Propulsion Engines Clarification: Impacts of In-Situ Alternative Propellant on Nuclear Thermal Propulsion Mars Vehicle Architectures Concurrent Design Optimization of Tether-Net System and Actions for Reliable Space-Debris Capture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1