基于常用因子的高光谱图像探测方法的比较:主成分分析、最大自相关因子(MAF)、最小噪声因子(MNF)和最大差异因子

Q3 Chemistry Journal of Spectral Imaging Pub Date : 2022-08-16 DOI:10.1255/jsi.2022.a6
Neal Gallagher
{"title":"基于常用因子的高光谱图像探测方法的比较:主成分分析、最大自相关因子(MAF)、最小噪声因子(MNF)和最大差异因子","authors":"Neal Gallagher","doi":"10.1255/jsi.2022.a6","DOIUrl":null,"url":null,"abstract":"Principal components analysis (PCA), maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors (MDF) models are common factor-based models used for analysis of hyperspectral images. The models can be posed as maximisation problems that result in a symmetric eigenvalue problem (SEP) for each model. The SEPs allow a simple theoretical comparison of the models using a PCA metaphor with MAF, MNF and MDF describable as weighted PCA models. The examples show that the different methods captured different signals in the images that can be examined individually or combined synergistically allowing for additional modelling and extended visualisation. MDF is a factor-based edge detection model that not only allows for additional visualisation but the opportunity to identify and exclude (or highlight) edge signal in the images. An example shows that models can also be used synergistically for finding and elucidating anomalies. In the example, MDF showed the highest sensitivity of the models studied for anomaly detection.","PeriodicalId":37385,"journal":{"name":"Journal of Spectral Imaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of common factor-based methods for hyperspectral image exploration: principal components analysis, maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors\",\"authors\":\"Neal Gallagher\",\"doi\":\"10.1255/jsi.2022.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal components analysis (PCA), maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors (MDF) models are common factor-based models used for analysis of hyperspectral images. The models can be posed as maximisation problems that result in a symmetric eigenvalue problem (SEP) for each model. The SEPs allow a simple theoretical comparison of the models using a PCA metaphor with MAF, MNF and MDF describable as weighted PCA models. The examples show that the different methods captured different signals in the images that can be examined individually or combined synergistically allowing for additional modelling and extended visualisation. MDF is a factor-based edge detection model that not only allows for additional visualisation but the opportunity to identify and exclude (or highlight) edge signal in the images. An example shows that models can also be used synergistically for finding and elucidating anomalies. In the example, MDF showed the highest sensitivity of the models studied for anomaly detection.\",\"PeriodicalId\":37385,\"journal\":{\"name\":\"Journal of Spectral Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1255/jsi.2022.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1255/jsi.2022.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

主成分分析(PCA)、最大自相关因子(MAF)、最小噪声因子(MNF)和最大差分因子(MDF)模型是高光谱图像分析中常用的基于因子的模型。模型可以被提出为最大化问题,导致每个模型的对称特征值问题(SEP)。sep允许使用PCA比喻与MAF, MNF和MDF描述为加权PCA模型的模型进行简单的理论比较。这些例子表明,不同的方法在图像中捕获了不同的信号,这些信号可以单独检查,也可以协同组合,从而实现额外的建模和扩展的可视化。MDF是一种基于因素的边缘检测模型,它不仅允许额外的可视化,而且有机会识别和排除(或突出显示)图像中的边缘信号。实例表明,这些模型也可以协同用于发现和解释异常。在本例中,MDF显示了所研究模型中异常检测的最高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of common factor-based methods for hyperspectral image exploration: principal components analysis, maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors
Principal components analysis (PCA), maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors (MDF) models are common factor-based models used for analysis of hyperspectral images. The models can be posed as maximisation problems that result in a symmetric eigenvalue problem (SEP) for each model. The SEPs allow a simple theoretical comparison of the models using a PCA metaphor with MAF, MNF and MDF describable as weighted PCA models. The examples show that the different methods captured different signals in the images that can be examined individually or combined synergistically allowing for additional modelling and extended visualisation. MDF is a factor-based edge detection model that not only allows for additional visualisation but the opportunity to identify and exclude (or highlight) edge signal in the images. An example shows that models can also be used synergistically for finding and elucidating anomalies. In the example, MDF showed the highest sensitivity of the models studied for anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spectral Imaging
Journal of Spectral Imaging Chemistry-Analytical Chemistry
CiteScore
3.90
自引率
0.00%
发文量
11
审稿时长
22 weeks
期刊介绍: JSI—Journal of Spectral Imaging is the first journal to bring together current research from the diverse research areas of spectral, hyperspectral and chemical imaging as well as related areas such as remote sensing, chemometrics, data mining and data handling for spectral image data. We believe all those working in Spectral Imaging can benefit from the knowledge of others even in widely different fields. We welcome original research papers, letters, review articles, tutorial papers, short communications and technical notes.
期刊最新文献
Estimation of pigment concentration in LDPE via in-line hyperspectral imaging and machine learning The hybrid approach—convolutional neural networks and expectation maximisation algorithm—for tomographic reconstruction of hyperspectral images Comparison of 2D and 3D semantic segmentation in urban areas using fused hyperspectral and lidar data Comparison of different illumination systems for moisture prediction in cereal bars using hyperspectral imaging technology Reflectance spectra and AVIRIS-NG airborne hyperspectral data analysis for mapping ultramafic rocks in igneous terrain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1