基于微裂纹填充的树脂基摩擦材料的摩擦学和力学性能

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2022-11-29 DOI:10.1049/bsb2.12055
Lekai Li, Guixiong Gao, Jin Tong, Jian Zhuang, Wei Song, Yunhai Ma, Guoqin Liu, Feipeng Cao, Shengwang Yuan, Qifeng Zhang
{"title":"基于微裂纹填充的树脂基摩擦材料的摩擦学和力学性能","authors":"Lekai Li,&nbsp;Guixiong Gao,&nbsp;Jin Tong,&nbsp;Jian Zhuang,&nbsp;Wei Song,&nbsp;Yunhai Ma,&nbsp;Guoqin Liu,&nbsp;Feipeng Cao,&nbsp;Shengwang Yuan,&nbsp;Qifeng Zhang","doi":"10.1049/bsb2.12055","DOIUrl":null,"url":null,"abstract":"<p>To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10<sup>−7</sup> cm<sup>3</sup> (N·m)<sup>−1</sup> at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"9 1","pages":"1-8"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12055","citationCount":"2","resultStr":"{\"title\":\"Tribological and mechanical behaviours of resin-based friction materials based on microcrack filling\",\"authors\":\"Lekai Li,&nbsp;Guixiong Gao,&nbsp;Jin Tong,&nbsp;Jian Zhuang,&nbsp;Wei Song,&nbsp;Yunhai Ma,&nbsp;Guoqin Liu,&nbsp;Feipeng Cao,&nbsp;Shengwang Yuan,&nbsp;Qifeng Zhang\",\"doi\":\"10.1049/bsb2.12055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10<sup>−7</sup> cm<sup>3</sup> (N·m)<sup>−1</sup> at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"9 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12055\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

为提高树脂基摩擦材料的摩擦性能,采用JF150F-II等速试验机对5种不同PEEK含量的树脂基摩擦材料进行了物理力学性能测试和摩擦学性能研究。研究发现,PEEK的加入对摩擦材料的性能有积极的影响,样品FM-3(“摩擦材料-3”的简写,含有2 wt% PEEK)的摩擦性能得到改善,其褪色率和恢复率分别为8.6%和101.1%。在所有样品中,FM-4(“摩擦材料-4”的简写,含有3 wt% PEEK)在350℃时具有最低的比磨损率,值为0.622 × 10−7 cm3 (N·m)−1。PEEK可以在高温下填充复合材料中的微裂纹,也可以覆盖坚硬的磨料颗粒,防止它们直接损坏复合材料。研究结果为进一步提高树脂基摩擦材料的性能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribological and mechanical behaviours of resin-based friction materials based on microcrack filling

To enhance the friction performance of resin-based friction materials, five types of specimens with different polymer ether ketone (PEEK) contents were fabricated and their physiomechanical behaviours were tested and, their tribological properties were investigated using a JF150F-II constant-speed tester. It was found that the addition of PEEK had a positive influence on the properties of the friction materials, and sample FM-3 (the shorthand of ‘Friction Materials-3’, containing 2 wt% PEEK) exhibited improved friction performance with a fade ratio and recovery ratio of 8.6% and 101.1% respectively. Among all samples, FM-4 (the shorthand of ‘Friction Materials-4’, containing 3 wt% PEEK) had the lowest specific wear rate with a value of 0.622 × 10−7 cm3 (N·m)−1 at 350°C. The PEEK can fill the microcracks in the composite at a high temperature and can also cover the hard abrasive particles to prevent them from directly damaging the composite. The findings from this study afford a foundation for studies to further improve the properties of resin-based friction materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1