Vinod Joshi, B. Shareef, B. Angel, Annette Angel, Ramesh Joshi, A. Khan, Poorna Khaneja, N. Peer, Bhawna Sharma, Neha Singh, Satinder Pal Singh, Shilpa Barthwal, Komal Tomar, Kiran Yadav
{"title":"宿主-病毒相互作用的分子基础解释SARS-CoV-2的Omicron和Delta变体引起的相对传播和严重程度","authors":"Vinod Joshi, B. Shareef, B. Angel, Annette Angel, Ramesh Joshi, A. Khan, Poorna Khaneja, N. Peer, Bhawna Sharma, Neha Singh, Satinder Pal Singh, Shilpa Barthwal, Komal Tomar, Kiran Yadav","doi":"10.22207/jpam.17.3.22","DOIUrl":null,"url":null,"abstract":"In India and other affected countries, Omicron variant of SARS-CoV-2 has shown faster transmission but less clinical severities when compared to Delta strain. Present study was aimed to investigate how molecular changes in the spike proteins of Omicron variant has increased its transmission but reduced the disease severity. We report molecular interactions of Spike proteins of Delta and Omicron variants with ACE-2 receptor to explain how change in chemical and physical nature of mutated amino acids of Omicron variant has affected the internalization competence of virus into host cell. The Research Collaboratory Structural Bioinformatics (RCSB) and Protein Data Bank (PDB) were used to construct ACE2-Spike Protein interaction. The binding affinity of both omicron and delta variant spike proteins with human ACE2 receptor was observed. Spike protein of Omicron variants has revealed total number of 93 dissimilarities of amino acids from Delta strain,15 of which are in its Receptor Binding Domain (RBD). Our study showed that RBD of Delta variant contained only one hydrophobic amino acid whereas there were 6 hydrophobic amino acids in the RBD of Omicron variant. We report that increased number of Hydrophobic Amino Acids in RBD of Omicron variant affects its binding with ACE2 receptor to enter into the cell. The failure of internalization of virus has increased concentration of extracellular virions at nasopharyngeal region leading to faster expulsion of infective droplets during coughing or sneezing to increase transmission but has reduced the severity of infection. The reported observations could prove to be of public health and therapeutic significance.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Basis of Host-Virus Interactions to Explain Relative Transmission and Severity Caused by Omicron and Delta variants of SARS-CoV-2\",\"authors\":\"Vinod Joshi, B. Shareef, B. Angel, Annette Angel, Ramesh Joshi, A. Khan, Poorna Khaneja, N. Peer, Bhawna Sharma, Neha Singh, Satinder Pal Singh, Shilpa Barthwal, Komal Tomar, Kiran Yadav\",\"doi\":\"10.22207/jpam.17.3.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In India and other affected countries, Omicron variant of SARS-CoV-2 has shown faster transmission but less clinical severities when compared to Delta strain. Present study was aimed to investigate how molecular changes in the spike proteins of Omicron variant has increased its transmission but reduced the disease severity. We report molecular interactions of Spike proteins of Delta and Omicron variants with ACE-2 receptor to explain how change in chemical and physical nature of mutated amino acids of Omicron variant has affected the internalization competence of virus into host cell. The Research Collaboratory Structural Bioinformatics (RCSB) and Protein Data Bank (PDB) were used to construct ACE2-Spike Protein interaction. The binding affinity of both omicron and delta variant spike proteins with human ACE2 receptor was observed. Spike protein of Omicron variants has revealed total number of 93 dissimilarities of amino acids from Delta strain,15 of which are in its Receptor Binding Domain (RBD). Our study showed that RBD of Delta variant contained only one hydrophobic amino acid whereas there were 6 hydrophobic amino acids in the RBD of Omicron variant. We report that increased number of Hydrophobic Amino Acids in RBD of Omicron variant affects its binding with ACE2 receptor to enter into the cell. The failure of internalization of virus has increased concentration of extracellular virions at nasopharyngeal region leading to faster expulsion of infective droplets during coughing or sneezing to increase transmission but has reduced the severity of infection. The reported observations could prove to be of public health and therapeutic significance.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.3.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Molecular Basis of Host-Virus Interactions to Explain Relative Transmission and Severity Caused by Omicron and Delta variants of SARS-CoV-2
In India and other affected countries, Omicron variant of SARS-CoV-2 has shown faster transmission but less clinical severities when compared to Delta strain. Present study was aimed to investigate how molecular changes in the spike proteins of Omicron variant has increased its transmission but reduced the disease severity. We report molecular interactions of Spike proteins of Delta and Omicron variants with ACE-2 receptor to explain how change in chemical and physical nature of mutated amino acids of Omicron variant has affected the internalization competence of virus into host cell. The Research Collaboratory Structural Bioinformatics (RCSB) and Protein Data Bank (PDB) were used to construct ACE2-Spike Protein interaction. The binding affinity of both omicron and delta variant spike proteins with human ACE2 receptor was observed. Spike protein of Omicron variants has revealed total number of 93 dissimilarities of amino acids from Delta strain,15 of which are in its Receptor Binding Domain (RBD). Our study showed that RBD of Delta variant contained only one hydrophobic amino acid whereas there were 6 hydrophobic amino acids in the RBD of Omicron variant. We report that increased number of Hydrophobic Amino Acids in RBD of Omicron variant affects its binding with ACE2 receptor to enter into the cell. The failure of internalization of virus has increased concentration of extracellular virions at nasopharyngeal region leading to faster expulsion of infective droplets during coughing or sneezing to increase transmission but has reduced the severity of infection. The reported observations could prove to be of public health and therapeutic significance.
期刊介绍:
Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.