高维的近最优中心极限定理和自举近似

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Probability Pub Date : 2020-12-17 DOI:10.47004/wp.cem.2021.0821
V. Chernozhukov, D. Chetverikov, Yuta Koike
{"title":"高维的近最优中心极限定理和自举近似","authors":"V. Chernozhukov, D. Chetverikov, Yuta Koike","doi":"10.47004/wp.cem.2021.0821","DOIUrl":null,"url":null,"abstract":"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \\log^3 d/n)^{1/2} \\log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Nearly optimal central limit theorem and bootstrap approximations in high dimensions\",\"authors\":\"V. Chernozhukov, D. Chetverikov, Yuta Koike\",\"doi\":\"10.47004/wp.cem.2021.0821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\\\\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \\\\log^3 d/n)^{1/2} \\\\log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\\\\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47004/wp.cem.2021.0821\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47004/wp.cem.2021.0821","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 30

摘要

在本文中,我们导出了在矩形类上$n$独立高维中心随机向量$X_1,\dots,X_n$的缩放平均值的高斯近似的新的、近似的最优界,当缩放平均值的协方差矩阵是非退化的。在有界$X_i$ 's的情况下,缩放平均分布和高斯矢量分布之间的Kolmogorov距离的隐含边界采用$$C (B^2_n \log^3 d/n)^{1/2} \log n,$$的形式,其中$d$是矢量的维数,$B_n$是$X_i$ 's分量上的均匀包络常数。这个边界在$d$和$B_n$方面很明显。并且在样本量方面几乎(直到$\log n$)尖锐$n$。此外,我们还证明了乘法器和经验自举近似的边界是相似的。此外,我们建立了允许无界$X_i$ 's的边界,仅用$X_i$ 's的矩表示。最后,我们证明了在一些特殊的光滑和零偏度情况下,边界可以进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nearly optimal central limit theorem and bootstrap approximations in high dimensions
In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \log^3 d/n)^{1/2} \log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
期刊最新文献
Disagreement coupling of Gibbs processes with an application to Poisson approximation Hydrodynamic limit for the Kob–Andersen model Geometry of random Cayley graphs of Abelian groups The trunks of CLE(4) explorations Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1