{"title":"强颗粒动力学抵消了养分泵送效应,导致气旋涡旋中的碳通量较弱","authors":"Xiao-Yuan Zhu, Zixiang Yang, Yuyuan Xie , Kuanbo Zhou, Wei-Lei Wang","doi":"10.1016/j.marchem.2023.104279","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Sinking particles play a crucial role in transferring carbon from the atmosphere to the deep ocean. However, due to intensive particle transformations such as aggregation, disaggregation, and remineralization, only a small portion of the </span>organic carbon<span><span> produced in the euphotic zone ends up being sequestered in the deep ocean or sediment. </span>Mesoscale eddies<span> can significantly impact the surface ocean nutrient budget<span>, primary production, and carbon export. Despite this, there is still a lack of research on how particle dynamics in eddy-impacted regions affect the efficiency of carbon export. In this study, we used observations of thorium isotopes (</span></span></span></span><sup>234</sup>Th and <sup>228</sup><span>Th) and particulate organic carbon (POC) at two stations in the South China Sea (TS1: a decaying-eddy-impacted station and SEATS: an oligotrophic station) and an inverse model to investigate the impact of particle dynamics on particle export efficiency. Our findings indicate that particle remineralization/fragmentation was enhanced inside the eddy, which counteracted the nutrient pumping effect that promotes surface ocean productivity and eventually led to even lower carbon flux compared to the oligotrophic station.</span></p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"255 ","pages":"Article 104279"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong particle dynamics counteract the nutrient-pumping effect leading to weak carbon flux in a cyclonic eddy\",\"authors\":\"Xiao-Yuan Zhu, Zixiang Yang, Yuyuan Xie , Kuanbo Zhou, Wei-Lei Wang\",\"doi\":\"10.1016/j.marchem.2023.104279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Sinking particles play a crucial role in transferring carbon from the atmosphere to the deep ocean. However, due to intensive particle transformations such as aggregation, disaggregation, and remineralization, only a small portion of the </span>organic carbon<span><span> produced in the euphotic zone ends up being sequestered in the deep ocean or sediment. </span>Mesoscale eddies<span> can significantly impact the surface ocean nutrient budget<span>, primary production, and carbon export. Despite this, there is still a lack of research on how particle dynamics in eddy-impacted regions affect the efficiency of carbon export. In this study, we used observations of thorium isotopes (</span></span></span></span><sup>234</sup>Th and <sup>228</sup><span>Th) and particulate organic carbon (POC) at two stations in the South China Sea (TS1: a decaying-eddy-impacted station and SEATS: an oligotrophic station) and an inverse model to investigate the impact of particle dynamics on particle export efficiency. Our findings indicate that particle remineralization/fragmentation was enhanced inside the eddy, which counteracted the nutrient pumping effect that promotes surface ocean productivity and eventually led to even lower carbon flux compared to the oligotrophic station.</span></p></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"255 \",\"pages\":\"Article 104279\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420323000750\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420323000750","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strong particle dynamics counteract the nutrient-pumping effect leading to weak carbon flux in a cyclonic eddy
Sinking particles play a crucial role in transferring carbon from the atmosphere to the deep ocean. However, due to intensive particle transformations such as aggregation, disaggregation, and remineralization, only a small portion of the organic carbon produced in the euphotic zone ends up being sequestered in the deep ocean or sediment. Mesoscale eddies can significantly impact the surface ocean nutrient budget, primary production, and carbon export. Despite this, there is still a lack of research on how particle dynamics in eddy-impacted regions affect the efficiency of carbon export. In this study, we used observations of thorium isotopes (234Th and 228Th) and particulate organic carbon (POC) at two stations in the South China Sea (TS1: a decaying-eddy-impacted station and SEATS: an oligotrophic station) and an inverse model to investigate the impact of particle dynamics on particle export efficiency. Our findings indicate that particle remineralization/fragmentation was enhanced inside the eddy, which counteracted the nutrient pumping effect that promotes surface ocean productivity and eventually led to even lower carbon flux compared to the oligotrophic station.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.