{"title":"评估草原溪流鱼类组合的小蓄水量和长期轨迹之间的联系","authors":"S. C. Hedden, Lindsey A. Bruckerhoff, K. Gido","doi":"10.1674/0003-0031-185.2.187","DOIUrl":null,"url":null,"abstract":"Abstract. Most stream fish communities have changed over time in response to common anthropogenic disturbances. Impoundments are a widespread anthropogenic stressor that can negatively impact stream fishes as they alter flow regimes, block movements, and act as fountainheads for the introduction and spread of invasive species. Recent studies, however, have reported the occurrence and reproduction of native fishes in impoundments, suggesting they might benefit some native fishes. Our primary objective was to evaluate whether impoundment construction has led to changes in fish community structure in prairie streams. To accomplish this, we compared fish occupancy in small impoundments (,5 ha) to temporal trends in stream occupancy among species to test whether species' increases in stream occupancy were related to their occupancy in impoundments. We examined stream fish communities in the Upper Cottonwood River basin, Kansas, from 1948–2018, and sampled small impoundments in 2016 and 2017. A third (32%) of fish communities in impoundments were similar to stream assemblages, whereas most impoundments (68%) were dominated by sport or bait fishes. In streams, six species showed increases in occupancy and four species showed decreases since small impoundment construction. Of the species that exhibited increased stream occupancy, five showed a positive, logistical relationship between a species' impoundment occupancy and its increase in stream occupancy. Species declining in stream occupancy experienced continued linear declines and may still be declining. Our research suggests stream fish communities have changed since impoundment construction, and are associated with locally-invasive, native species reaching a new stable state in streams accompanied by declines in other native stream fish species.","PeriodicalId":50802,"journal":{"name":"American Midland Naturalist","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing Linkages Between Small Impoundments and Long-term Trajectories of Prairie Stream Fish Assemblages\",\"authors\":\"S. C. Hedden, Lindsey A. Bruckerhoff, K. Gido\",\"doi\":\"10.1674/0003-0031-185.2.187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Most stream fish communities have changed over time in response to common anthropogenic disturbances. Impoundments are a widespread anthropogenic stressor that can negatively impact stream fishes as they alter flow regimes, block movements, and act as fountainheads for the introduction and spread of invasive species. Recent studies, however, have reported the occurrence and reproduction of native fishes in impoundments, suggesting they might benefit some native fishes. Our primary objective was to evaluate whether impoundment construction has led to changes in fish community structure in prairie streams. To accomplish this, we compared fish occupancy in small impoundments (,5 ha) to temporal trends in stream occupancy among species to test whether species' increases in stream occupancy were related to their occupancy in impoundments. We examined stream fish communities in the Upper Cottonwood River basin, Kansas, from 1948–2018, and sampled small impoundments in 2016 and 2017. A third (32%) of fish communities in impoundments were similar to stream assemblages, whereas most impoundments (68%) were dominated by sport or bait fishes. In streams, six species showed increases in occupancy and four species showed decreases since small impoundment construction. Of the species that exhibited increased stream occupancy, five showed a positive, logistical relationship between a species' impoundment occupancy and its increase in stream occupancy. Species declining in stream occupancy experienced continued linear declines and may still be declining. Our research suggests stream fish communities have changed since impoundment construction, and are associated with locally-invasive, native species reaching a new stable state in streams accompanied by declines in other native stream fish species.\",\"PeriodicalId\":50802,\"journal\":{\"name\":\"American Midland Naturalist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Midland Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1674/0003-0031-185.2.187\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Midland Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1674/0003-0031-185.2.187","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Assessing Linkages Between Small Impoundments and Long-term Trajectories of Prairie Stream Fish Assemblages
Abstract. Most stream fish communities have changed over time in response to common anthropogenic disturbances. Impoundments are a widespread anthropogenic stressor that can negatively impact stream fishes as they alter flow regimes, block movements, and act as fountainheads for the introduction and spread of invasive species. Recent studies, however, have reported the occurrence and reproduction of native fishes in impoundments, suggesting they might benefit some native fishes. Our primary objective was to evaluate whether impoundment construction has led to changes in fish community structure in prairie streams. To accomplish this, we compared fish occupancy in small impoundments (,5 ha) to temporal trends in stream occupancy among species to test whether species' increases in stream occupancy were related to their occupancy in impoundments. We examined stream fish communities in the Upper Cottonwood River basin, Kansas, from 1948–2018, and sampled small impoundments in 2016 and 2017. A third (32%) of fish communities in impoundments were similar to stream assemblages, whereas most impoundments (68%) were dominated by sport or bait fishes. In streams, six species showed increases in occupancy and four species showed decreases since small impoundment construction. Of the species that exhibited increased stream occupancy, five showed a positive, logistical relationship between a species' impoundment occupancy and its increase in stream occupancy. Species declining in stream occupancy experienced continued linear declines and may still be declining. Our research suggests stream fish communities have changed since impoundment construction, and are associated with locally-invasive, native species reaching a new stable state in streams accompanied by declines in other native stream fish species.
期刊介绍:
The American Midland Naturalist has been published for 90 years by the University of Notre Dame. The connotations of Midland and Naturalist have broadened and its geographic coverage now includes North America with occasional articles from other continents. The old image of naturalist has changed and the journal publishes what Charles Elton aptly termed "scientific natural history" including field and experimental biology. Its significance and breadth of coverage are evident in that the American Midland Naturalist is among the most frequently cited journals in publications on ecology, mammalogy, herpetology, ornithology, ichthyology, parasitology, aquatic and invertebrate biology and other biological disciplines.