丙烷自燃特性的综合研究

Muhammad Farhan
{"title":"丙烷自燃特性的综合研究","authors":"Muhammad Farhan","doi":"10.7717/peerj-pchem.29","DOIUrl":null,"url":null,"abstract":"Ignition delay times (IDT) for stoichiometric propane (C3H8) diluted with nitrogen were measured in a shock tube facility under reflected shock wave conditions at pressures ranging from 1 to 10 atm and temperatures between 850 and 1500 K. The experiments were limited to a maximum pressure of 10 atm due to the facility’s constraints. In addition, numerical simulations were conducted using several detailed kinetic mechanisms at pressures from 1 to 30 atm and three equivalence ratios (φ = 0.5, 1, and 2) to provide comparative insights. The results indicated that IDT decreases as pressure increases, with a more significant reduction observed between 1 and 10 atm compared to 10 to 30 atm. While most models exhibited similar trends and minimal discrepancies, the GRI Mech 3.0 mechanism demonstrated a slower prediction of ignition delay times at temperatures below 1250 K. In contrast, the POLIMI model exhibited a relatively faster prediction at temperatures above 1250 K, with the deviation between the two models becoming more pronounced as pressure increased. A comparative analysis revealed that the experimental predictions of propane autoignition behavior were in good agreement with the results obtained using the ARAMCO 3.0 mechanism. To further understand the chemistry governing the autoignition process of C3H8, a sensitivity analysis was performed for a stoichiometric mixture at three distinct temperatures (850 K, 1200 K, and 1550 K).","PeriodicalId":93220,"journal":{"name":"PeerJ physical chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study of autoignition characteristics of propane\",\"authors\":\"Muhammad Farhan\",\"doi\":\"10.7717/peerj-pchem.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ignition delay times (IDT) for stoichiometric propane (C3H8) diluted with nitrogen were measured in a shock tube facility under reflected shock wave conditions at pressures ranging from 1 to 10 atm and temperatures between 850 and 1500 K. The experiments were limited to a maximum pressure of 10 atm due to the facility’s constraints. In addition, numerical simulations were conducted using several detailed kinetic mechanisms at pressures from 1 to 30 atm and three equivalence ratios (φ = 0.5, 1, and 2) to provide comparative insights. The results indicated that IDT decreases as pressure increases, with a more significant reduction observed between 1 and 10 atm compared to 10 to 30 atm. While most models exhibited similar trends and minimal discrepancies, the GRI Mech 3.0 mechanism demonstrated a slower prediction of ignition delay times at temperatures below 1250 K. In contrast, the POLIMI model exhibited a relatively faster prediction at temperatures above 1250 K, with the deviation between the two models becoming more pronounced as pressure increased. A comparative analysis revealed that the experimental predictions of propane autoignition behavior were in good agreement with the results obtained using the ARAMCO 3.0 mechanism. To further understand the chemistry governing the autoignition process of C3H8, a sensitivity analysis was performed for a stoichiometric mixture at three distinct temperatures (850 K, 1200 K, and 1550 K).\",\"PeriodicalId\":93220,\"journal\":{\"name\":\"PeerJ physical chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ physical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-pchem.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ physical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7717/peerj-pchem.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在激波反射条件下,在压力为1 ~ 10atm,温度为850 ~ 1500k的激波反射条件下,用氮气稀释化学计量丙烷(C3H8)的点火延迟时间(IDT)进行了测量。由于设备的限制,实验的最大压力被限制在10atm。此外,在1 ~ 30 atm压力和3种等效比(φ = 0.5、1和2)下,采用几种详细的动力学机制进行了数值模拟,以提供比较的见解。结果表明,IDT随着压力的增加而降低,与10 ~ 30 atm相比,在1 ~ 10 atm之间的降低更为显著。虽然大多数模型显示出相似的趋势和最小的差异,但GRI Mech 3.0机制显示出在温度低于1250 K时点火延迟时间的预测速度较慢。相比之下,POLIMI模式在1250 K以上的温度下表现出相对较快的预测速度,随着压力的增加,两种模式之间的偏差越来越明显。对比分析表明,实验预测的丙烷自燃行为与采用ARAMCO 3.0机制得到的结果吻合较好。为了进一步了解控制C3H8自燃过程的化学性质,对三种不同温度(850 K、1200 K和1550 K)下的化学计量混合物进行了灵敏度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive study of autoignition characteristics of propane
Ignition delay times (IDT) for stoichiometric propane (C3H8) diluted with nitrogen were measured in a shock tube facility under reflected shock wave conditions at pressures ranging from 1 to 10 atm and temperatures between 850 and 1500 K. The experiments were limited to a maximum pressure of 10 atm due to the facility’s constraints. In addition, numerical simulations were conducted using several detailed kinetic mechanisms at pressures from 1 to 30 atm and three equivalence ratios (φ = 0.5, 1, and 2) to provide comparative insights. The results indicated that IDT decreases as pressure increases, with a more significant reduction observed between 1 and 10 atm compared to 10 to 30 atm. While most models exhibited similar trends and minimal discrepancies, the GRI Mech 3.0 mechanism demonstrated a slower prediction of ignition delay times at temperatures below 1250 K. In contrast, the POLIMI model exhibited a relatively faster prediction at temperatures above 1250 K, with the deviation between the two models becoming more pronounced as pressure increased. A comparative analysis revealed that the experimental predictions of propane autoignition behavior were in good agreement with the results obtained using the ARAMCO 3.0 mechanism. To further understand the chemistry governing the autoignition process of C3H8, a sensitivity analysis was performed for a stoichiometric mixture at three distinct temperatures (850 K, 1200 K, and 1550 K).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Comparing effects of attractive interactions in crowded systems: nonspecific, hydrophobic, and hydrogen bond interactions Genetic algorithm-based re-optimization of the Schrock catalyst for dinitrogen fixation Comprehensive study of autoignition characteristics of propane Toeholder: a software for automated design and in silico validation of toehold riboswitches In-silico assay of a dosing vehicle based on chitosan-TiO2 and modified benzofuran-isatin molecules against Pseudomonas aeruginosa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1