{"title":"溶液中吸附的Langmuir, Freundlich和Temkin等温线的gibbian解释","authors":"Lei Lu, Chongzheng Na","doi":"10.1080/09500839.2022.2084571","DOIUrl":null,"url":null,"abstract":"ABSTRACT Adsorption is a physicochemical phenomenon important in both natural and engineering processes. In the research and practice of adsorption equilibrium, a long-standing challenge is how to reconcile the classical models proposed by Gibbs, Langmuir, Freundlich, and Temkin for interpreting experimentally obtained adsorption isotherms. Here, we show that the Langmuir, Freundlich, and Temkin isotherms can be derived from the Gibbs equation under different conditions for the change of surface energy (a.k.a. surface tension) by adsorption. When the change of surface energy is predominantly controlled by the change of chemical potential with negligible contribution from the change of internal energy and entropy, the Gibbs equation can be integrated to give the Langmuir isotherm. When changes of internal energy and entropy are no longer negligible, the integration of the Gibbs equation gives the Freundlich and Temkin equations, according to a change of surface energy either independent or linearly dependent on the adsorption capacity. These results indicate that the classical models share the common mechanism of phase equilibrium described by the Gibbsian thermodynamics, thereby providing novel insights for their application.","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"102 1","pages":"239 - 253"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution\",\"authors\":\"Lei Lu, Chongzheng Na\",\"doi\":\"10.1080/09500839.2022.2084571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Adsorption is a physicochemical phenomenon important in both natural and engineering processes. In the research and practice of adsorption equilibrium, a long-standing challenge is how to reconcile the classical models proposed by Gibbs, Langmuir, Freundlich, and Temkin for interpreting experimentally obtained adsorption isotherms. Here, we show that the Langmuir, Freundlich, and Temkin isotherms can be derived from the Gibbs equation under different conditions for the change of surface energy (a.k.a. surface tension) by adsorption. When the change of surface energy is predominantly controlled by the change of chemical potential with negligible contribution from the change of internal energy and entropy, the Gibbs equation can be integrated to give the Langmuir isotherm. When changes of internal energy and entropy are no longer negligible, the integration of the Gibbs equation gives the Freundlich and Temkin equations, according to a change of surface energy either independent or linearly dependent on the adsorption capacity. These results indicate that the classical models share the common mechanism of phase equilibrium described by the Gibbsian thermodynamics, thereby providing novel insights for their application.\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"102 1\",\"pages\":\"239 - 253\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2022.2084571\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2022.2084571","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Gibbsian interpretation of Langmuir, Freundlich and Temkin isotherms for adsorption in solution
ABSTRACT Adsorption is a physicochemical phenomenon important in both natural and engineering processes. In the research and practice of adsorption equilibrium, a long-standing challenge is how to reconcile the classical models proposed by Gibbs, Langmuir, Freundlich, and Temkin for interpreting experimentally obtained adsorption isotherms. Here, we show that the Langmuir, Freundlich, and Temkin isotherms can be derived from the Gibbs equation under different conditions for the change of surface energy (a.k.a. surface tension) by adsorption. When the change of surface energy is predominantly controlled by the change of chemical potential with negligible contribution from the change of internal energy and entropy, the Gibbs equation can be integrated to give the Langmuir isotherm. When changes of internal energy and entropy are no longer negligible, the integration of the Gibbs equation gives the Freundlich and Temkin equations, according to a change of surface energy either independent or linearly dependent on the adsorption capacity. These results indicate that the classical models share the common mechanism of phase equilibrium described by the Gibbsian thermodynamics, thereby providing novel insights for their application.
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.