超越年代学,用贝叶斯推理评估考古学假说

IF 1.9 2区 历史学 0 ARCHAEOLOGY Advances in Archaeological Practice Pub Date : 2022-09-15 DOI:10.1017/aap.2022.10
Erik R. Otárola-Castillo, Melissa G. Torquato, J. Wolfhagen, M. Hill, C. Buck
{"title":"超越年代学,用贝叶斯推理评估考古学假说","authors":"Erik R. Otárola-Castillo, Melissa G. Torquato, J. Wolfhagen, M. Hill, C. Buck","doi":"10.1017/aap.2022.10","DOIUrl":null,"url":null,"abstract":"ABSTRACT Archaeologists frequently use probability distributions and null hypothesis significance testing (NHST) to assess how well survey, excavation, or experimental data align with their hypotheses about the past. Bayesian inference is increasingly used as an alternative to NHST and, in archaeology, is most commonly applied to radiocarbon date estimation and chronology building. This article demonstrates that Bayesian statistics has broader applications. It begins by contrasting NHST and Bayesian statistical frameworks, before introducing and applying Bayes's theorem. In order to guide the reader through an elementary step-by-step Bayesian analysis, this article uses a fictional archaeological faunal assemblage from a single site. The fictional example is then expanded to demonstrate how Bayesian analyses can be applied to data with a range of properties, formally incorporating expert prior knowledge into the hypothesis evaluation process.","PeriodicalId":7231,"journal":{"name":"Advances in Archaeological Practice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Beyond Chronology, Using Bayesian Inference to Evaluate Hypotheses in Archaeology\",\"authors\":\"Erik R. Otárola-Castillo, Melissa G. Torquato, J. Wolfhagen, M. Hill, C. Buck\",\"doi\":\"10.1017/aap.2022.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Archaeologists frequently use probability distributions and null hypothesis significance testing (NHST) to assess how well survey, excavation, or experimental data align with their hypotheses about the past. Bayesian inference is increasingly used as an alternative to NHST and, in archaeology, is most commonly applied to radiocarbon date estimation and chronology building. This article demonstrates that Bayesian statistics has broader applications. It begins by contrasting NHST and Bayesian statistical frameworks, before introducing and applying Bayes's theorem. In order to guide the reader through an elementary step-by-step Bayesian analysis, this article uses a fictional archaeological faunal assemblage from a single site. The fictional example is then expanded to demonstrate how Bayesian analyses can be applied to data with a range of properties, formally incorporating expert prior knowledge into the hypothesis evaluation process.\",\"PeriodicalId\":7231,\"journal\":{\"name\":\"Advances in Archaeological Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Archaeological Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aap.2022.10\",\"RegionNum\":2,\"RegionCategory\":\"历史学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Archaeological Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aap.2022.10","RegionNum":2,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

摘要考古学家经常使用概率分布和零假设显著性检验(NHST)来评估调查、挖掘或实验数据与他们关于过去的假设的一致性。贝叶斯推断越来越多地被用作NHST的替代方法,在考古学中,它最常用于放射性碳年代估计和年表构建。这篇文章证明了贝叶斯统计具有更广泛的应用。它首先对比了NHST和贝叶斯统计框架,然后介绍和应用贝叶斯定理。为了引导读者进行初步的逐步贝叶斯分析,本文使用了一个来自单个遗址的虚构考古动物群。然后对虚构的例子进行扩展,以演示如何将贝叶斯分析应用于具有一系列属性的数据,将专家先验知识正式纳入假设评估过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond Chronology, Using Bayesian Inference to Evaluate Hypotheses in Archaeology
ABSTRACT Archaeologists frequently use probability distributions and null hypothesis significance testing (NHST) to assess how well survey, excavation, or experimental data align with their hypotheses about the past. Bayesian inference is increasingly used as an alternative to NHST and, in archaeology, is most commonly applied to radiocarbon date estimation and chronology building. This article demonstrates that Bayesian statistics has broader applications. It begins by contrasting NHST and Bayesian statistical frameworks, before introducing and applying Bayes's theorem. In order to guide the reader through an elementary step-by-step Bayesian analysis, this article uses a fictional archaeological faunal assemblage from a single site. The fictional example is then expanded to demonstrate how Bayesian analyses can be applied to data with a range of properties, formally incorporating expert prior knowledge into the hypothesis evaluation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
21.40%
发文量
39
期刊最新文献
Settlement Selection and Inequality in Video Games through an Anthropological Lens Regression with Archaeological Count Data A Paperless and 3D Workflow for Documenting Excavations at Insula I.14, Pompeii, Italy The Legality and Ethics of Web Scraping in Archaeology Experimental Archaeogaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1