{"title":"基于权重点算法的稀疏信号重构","authors":"Koredianto Usman, H. Gunawan, A. B. Suksmono","doi":"10.5614/ITBJ.ICT.RES.APPL.2018.12.1.3","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new approach of the compressive sensing (CS) reconstruction problem based on a geometrical interpretation of l 1 -norm minimization. By taking a large l 1 -norm value at the initial step, the intersection of l 1 -norm and the constraint curves forms a convex polytope and by exploiting the fact that any convex combination of the polytope’s vertexes gives a new point that has a smaller l 1 -norm, we are able to derive a new algorithm to solve the CS reconstruction problem. Compared to the greedy algorithm, this algorithm has better performance, especially in highly coherent environments. Compared to the convex optimization, the proposed algorithm has simpler computation requirements. We tested the capability of this algorithm in reconstructing a randomly down-sampled version of the Dow Jones Industrial Average (DJIA) index. The proposed algorithm achieved a good result but only works on real-valued signals.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"12 1","pages":"35-53"},"PeriodicalIF":0.5000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Signal Reconstruction using Weight Point Algorithm\",\"authors\":\"Koredianto Usman, H. Gunawan, A. B. Suksmono\",\"doi\":\"10.5614/ITBJ.ICT.RES.APPL.2018.12.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new approach of the compressive sensing (CS) reconstruction problem based on a geometrical interpretation of l 1 -norm minimization. By taking a large l 1 -norm value at the initial step, the intersection of l 1 -norm and the constraint curves forms a convex polytope and by exploiting the fact that any convex combination of the polytope’s vertexes gives a new point that has a smaller l 1 -norm, we are able to derive a new algorithm to solve the CS reconstruction problem. Compared to the greedy algorithm, this algorithm has better performance, especially in highly coherent environments. Compared to the convex optimization, the proposed algorithm has simpler computation requirements. We tested the capability of this algorithm in reconstructing a randomly down-sampled version of the Dow Jones Industrial Average (DJIA) index. The proposed algorithm achieved a good result but only works on real-valued signals.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"12 1\",\"pages\":\"35-53\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2018.12.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ITBJ.ICT.RES.APPL.2018.12.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Sparse Signal Reconstruction using Weight Point Algorithm
In this paper we propose a new approach of the compressive sensing (CS) reconstruction problem based on a geometrical interpretation of l 1 -norm minimization. By taking a large l 1 -norm value at the initial step, the intersection of l 1 -norm and the constraint curves forms a convex polytope and by exploiting the fact that any convex combination of the polytope’s vertexes gives a new point that has a smaller l 1 -norm, we are able to derive a new algorithm to solve the CS reconstruction problem. Compared to the greedy algorithm, this algorithm has better performance, especially in highly coherent environments. Compared to the convex optimization, the proposed algorithm has simpler computation requirements. We tested the capability of this algorithm in reconstructing a randomly down-sampled version of the Dow Jones Industrial Average (DJIA) index. The proposed algorithm achieved a good result but only works on real-valued signals.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.