{"title":"含乙醇/丙酮和氧气的非均质混合物的爆燃-爆轰转变","authors":"H. Kadosh, D. Michaels","doi":"10.2514/1.b39154","DOIUrl":null,"url":null,"abstract":"Liquid fuel is the choice for volume-limited propulsion systems, including detonation-based propulsion. A liquid fuel with high vapor pressure has the advantage of more fuel vapor in the mixture, which supports the transition from deflagration to detonation. This paper reports on an experimental study of deflagration-to-detonation transition (DDT) in a pulse detonation engine with heterogenous mixtures of oxygen and ethanol or acetone. Single-cycle tests were taken for different fuels, equivalence ratios, and DDT enhancement methods. The size distribution of fuel droplets was characterized at the atomizer and engine exit. The effect of the fuel evaporation was dominant for the acetone spray only. Comparing the measured detonation velocities of the two mixtures, a lower velocity deficit relative to the theoretical Chapman–Jouguet detonation velocity was measured for the acetone–oxygen mixtures, and this behavior is related to the higher amount of fuel vapor that existed in the mixtures. Moreover, a shorter transition to detonation was observed in the acetone–oxygen mixture. The addition of a Shchelkin spiral reduced the DDT distance; however, the Chapman–Jouguet condition could be reached only downstream of the obstacle. The measured detonation cell size of the heterogeneous acetone–oxygen mixture was smaller than that of the ethanol–oxygen mixture, indicating that it is more detonable.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deflagration to Detonation Transition in Heterogeneous Mixtures Containing Ethanol/Acetone and Oxygen\",\"authors\":\"H. Kadosh, D. Michaels\",\"doi\":\"10.2514/1.b39154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid fuel is the choice for volume-limited propulsion systems, including detonation-based propulsion. A liquid fuel with high vapor pressure has the advantage of more fuel vapor in the mixture, which supports the transition from deflagration to detonation. This paper reports on an experimental study of deflagration-to-detonation transition (DDT) in a pulse detonation engine with heterogenous mixtures of oxygen and ethanol or acetone. Single-cycle tests were taken for different fuels, equivalence ratios, and DDT enhancement methods. The size distribution of fuel droplets was characterized at the atomizer and engine exit. The effect of the fuel evaporation was dominant for the acetone spray only. Comparing the measured detonation velocities of the two mixtures, a lower velocity deficit relative to the theoretical Chapman–Jouguet detonation velocity was measured for the acetone–oxygen mixtures, and this behavior is related to the higher amount of fuel vapor that existed in the mixtures. Moreover, a shorter transition to detonation was observed in the acetone–oxygen mixture. The addition of a Shchelkin spiral reduced the DDT distance; however, the Chapman–Jouguet condition could be reached only downstream of the obstacle. The measured detonation cell size of the heterogeneous acetone–oxygen mixture was smaller than that of the ethanol–oxygen mixture, indicating that it is more detonable.\",\"PeriodicalId\":16903,\"journal\":{\"name\":\"Journal of Propulsion and Power\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Propulsion and Power\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b39154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Deflagration to Detonation Transition in Heterogeneous Mixtures Containing Ethanol/Acetone and Oxygen
Liquid fuel is the choice for volume-limited propulsion systems, including detonation-based propulsion. A liquid fuel with high vapor pressure has the advantage of more fuel vapor in the mixture, which supports the transition from deflagration to detonation. This paper reports on an experimental study of deflagration-to-detonation transition (DDT) in a pulse detonation engine with heterogenous mixtures of oxygen and ethanol or acetone. Single-cycle tests were taken for different fuels, equivalence ratios, and DDT enhancement methods. The size distribution of fuel droplets was characterized at the atomizer and engine exit. The effect of the fuel evaporation was dominant for the acetone spray only. Comparing the measured detonation velocities of the two mixtures, a lower velocity deficit relative to the theoretical Chapman–Jouguet detonation velocity was measured for the acetone–oxygen mixtures, and this behavior is related to the higher amount of fuel vapor that existed in the mixtures. Moreover, a shorter transition to detonation was observed in the acetone–oxygen mixture. The addition of a Shchelkin spiral reduced the DDT distance; however, the Chapman–Jouguet condition could be reached only downstream of the obstacle. The measured detonation cell size of the heterogeneous acetone–oxygen mixture was smaller than that of the ethanol–oxygen mixture, indicating that it is more detonable.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.