Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas
{"title":"基于稀疏回归的单变量表达式的符号-数值积分","authors":"Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas","doi":"10.1145/3572867.3572882","DOIUrl":null,"url":null,"abstract":"The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"84 - 87"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbolic-numeric integration of univariate expressions based on sparse regression\",\"authors\":\"Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas\",\"doi\":\"10.1145/3572867.3572882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"84 - 87\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572867.3572882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Symbolic-numeric integration of univariate expressions based on sparse regression
The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.