基于稀疏回归的单变量表达式的符号-数值积分

IF 0.4 Q4 MATHEMATICS, APPLIED ACM Communications in Computer Algebra Pub Date : 2022-01-29 DOI:10.1145/3572867.3572882
Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas
{"title":"基于稀疏回归的单变量表达式的符号-数值积分","authors":"Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas","doi":"10.1145/3572867.3572882","DOIUrl":null,"url":null,"abstract":"The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"56 1","pages":"84 - 87"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbolic-numeric integration of univariate expressions based on sparse regression\",\"authors\":\"Shahriar Iravanian, Carl Martensen, Alessandro Cheli, Shashi Gowda, Anand Jain, Yingbo Ma, Chris Rackauckas\",\"doi\":\"10.1145/3572867.3572882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"56 1\",\"pages\":\"84 - 87\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572867.3572882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572867.3572882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

大多数计算机代数系统(CAS)支持使用启发式代数和基于规则的(积分表)方法相结合的符号积分。在本文中,我们提出了一种混合(符号-数字)方法来计算一元表达式的不定积分。我们的方法大致类似于里希-诺曼算法。这项工作的主要动机是将符号集成功能添加到现代CAS(SciML的符号操作包,Julia编程语言的科学机器学习生态系统)中,该软件包是为数值和机器学习应用程序设计的。我们的方法的符号部分是基于候选项生成(使用从同构运算符理论借用的方法的ansatz生成)与底层CAS提供的基于规则的表达式转换的组合。数值部分使用稀疏回归(非线性动力学稀疏识别(SINDy)技术的一个组成部分)来寻找候选项的系数。我们证明,该系统只需使用几十个基本的集成规则就可以解决各种常见的集成问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symbolic-numeric integration of univariate expressions based on sparse regression
The majority of computer algebra systems (CAS) support symbolic integration using a combination of heuristic algebraic and rule-based (integration table) methods. In this paper, we present a hybrid (symbolic-numeric) method to calculate the indefinite integrals of univariate expressions. Our method is broadly similar to the Risch-Norman algorithm. The primary motivation for this work is to add symbolic integration functionality to a modern CAS (the symbolic manipulation packages of SciML, the Scientific Machine Learning ecosystem of the Julia programming language), which is designed for numerical and machine learning applications. The symbolic part of our method is based on the combination of candidate terms generation (ansatz generation using a methodology borrowed from the Homotopy operators theory) combined with rule-based expression transformations provided by the underlying CAS. The numeric part uses sparse regression, a component of the Sparse Identification of Nonlinear Dynamics (SINDy) technique, to find the coefficients of the candidate terms. We show that this system can solve a large variety of common integration problems using only a few dozen basic integration rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Novel Application of Polynomial Solvers in mmWave Analog Radio Beamforming How to use a CAS for Hardware Design Automation Clustering in the Lazard method for Cylindrical Algebraic Decomposition Computing Almost-Commuting Basis of Ordinary Differential Operators Symmetry Adapted Bases for Trigonometric Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1