基于信道修剪的卫星遥感图像目标检测硬件加速

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY Applied Sciences-Basel Pub Date : 2023-09-08 DOI:10.3390/app131810111
Yong Zhao, Yong Lv, Chao Li
{"title":"基于信道修剪的卫星遥感图像目标检测硬件加速","authors":"Yong Zhao, Yong Lv, Chao Li","doi":"10.3390/app131810111","DOIUrl":null,"url":null,"abstract":"Real-time detection of satellite remote sensing images is one of the key technologies in the field of remote sensing, which requires not only high-efficiency algorithms, but also low-power and high-performance hardware deployment platforms. At present, the image processing hardware acceleration platform mainly uses an image processing unit (GPU), but the GPU has the problem of large power consumption, and it is difficult to apply to micro-nano satellites and other devices with limited volume, weight, computing power, and power consumption. At the same time, the deep learning algorithm model has the problem of too many parameters, and it is difficult to directly deploy it on embedded devices. In order to solve the above problems, we propose a YOLOv4-MobileNetv3 field programmable gate array (FPGA) deployment scheme based on channel layer pruning. Experiments show that the acceleration strategy proposed by us can reduce the number of model parameters by 91.11%, and on the aerial remote sensing dataset DIOR, the average accuracy of the design scheme in this paper reaches 82.61%, the FPS reaches 48.14, and the average power consumption is 7.2 W, which is 317.88% FPS higher than the CPU and reduces the power consumption by 81.91%. Compared to the GPU, it reduces power consumption by 91.85% and improves FPS by 8.50%. Compared with CPUs and GPUs, our proposed lightweight algorithm model is more energy-efficient and more real-time, and is suitable for application in spaceborne remote sensing image processing systems.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Acceleration of Satellite Remote Sensing Image Object Detection Based on Channel Pruning\",\"authors\":\"Yong Zhao, Yong Lv, Chao Li\",\"doi\":\"10.3390/app131810111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time detection of satellite remote sensing images is one of the key technologies in the field of remote sensing, which requires not only high-efficiency algorithms, but also low-power and high-performance hardware deployment platforms. At present, the image processing hardware acceleration platform mainly uses an image processing unit (GPU), but the GPU has the problem of large power consumption, and it is difficult to apply to micro-nano satellites and other devices with limited volume, weight, computing power, and power consumption. At the same time, the deep learning algorithm model has the problem of too many parameters, and it is difficult to directly deploy it on embedded devices. In order to solve the above problems, we propose a YOLOv4-MobileNetv3 field programmable gate array (FPGA) deployment scheme based on channel layer pruning. Experiments show that the acceleration strategy proposed by us can reduce the number of model parameters by 91.11%, and on the aerial remote sensing dataset DIOR, the average accuracy of the design scheme in this paper reaches 82.61%, the FPS reaches 48.14, and the average power consumption is 7.2 W, which is 317.88% FPS higher than the CPU and reduces the power consumption by 81.91%. Compared to the GPU, it reduces power consumption by 91.85% and improves FPS by 8.50%. Compared with CPUs and GPUs, our proposed lightweight algorithm model is more energy-efficient and more real-time, and is suitable for application in spaceborne remote sensing image processing systems.\",\"PeriodicalId\":48760,\"journal\":{\"name\":\"Applied Sciences-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences-Basel\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/app131810111\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810111","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卫星遥感图像的实时检测是遥感领域的关键技术之一,不仅需要高效的算法,还需要低功耗、高性能的硬件部署平台。目前,图像处理硬件加速平台主要采用图像处理单元(GPU),但GPU存在功耗大的问题,难以应用于微纳卫星等体积、重量、计算能力、功耗有限的设备。同时,深度学习算法模型存在参数过多的问题,难以直接部署在嵌入式设备上。为了解决上述问题,我们提出了一种基于信道层剪枝的YOLOv4-MobileNetv3现场可编程门阵列(FPGA)部署方案。实验表明,本文提出的加速策略可以减少91.11%的模型参数个数,在航空遥感数据集DIOR上,设计方案的平均精度达到82.61%,FPS达到48.14,平均功耗为7.2 W,比CPU高317.88% FPS,功耗降低81.91%。与GPU相比,它降低了91.85%的功耗,提高了8.50%的FPS。与cpu和gpu相比,我们提出的轻量化算法模型具有更高的能效和实时性,适合应用于星载遥感图像处理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware Acceleration of Satellite Remote Sensing Image Object Detection Based on Channel Pruning
Real-time detection of satellite remote sensing images is one of the key technologies in the field of remote sensing, which requires not only high-efficiency algorithms, but also low-power and high-performance hardware deployment platforms. At present, the image processing hardware acceleration platform mainly uses an image processing unit (GPU), but the GPU has the problem of large power consumption, and it is difficult to apply to micro-nano satellites and other devices with limited volume, weight, computing power, and power consumption. At the same time, the deep learning algorithm model has the problem of too many parameters, and it is difficult to directly deploy it on embedded devices. In order to solve the above problems, we propose a YOLOv4-MobileNetv3 field programmable gate array (FPGA) deployment scheme based on channel layer pruning. Experiments show that the acceleration strategy proposed by us can reduce the number of model parameters by 91.11%, and on the aerial remote sensing dataset DIOR, the average accuracy of the design scheme in this paper reaches 82.61%, the FPS reaches 48.14, and the average power consumption is 7.2 W, which is 317.88% FPS higher than the CPU and reduces the power consumption by 81.91%. Compared to the GPU, it reduces power consumption by 91.85% and improves FPS by 8.50%. Compared with CPUs and GPUs, our proposed lightweight algorithm model is more energy-efficient and more real-time, and is suitable for application in spaceborne remote sensing image processing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Study on Shear Resistance and Structural Performance of Corrugated Steel–Concrete Composite Deck Clustering Analysis of Wind Turbine Alarm Sequences Based on Domain Knowledge-Fused Word2vec Unraveling Functional Dysphagia: A Game-Changing Automated Machine-Learning Diagnostic Approach Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in Gangdese Metallogenic Belt, Tibet, Western China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1