{"title":"用移动设备实时翻译SIBI(印尼手势符号系统)手势到文字","authors":"M. Jonathan, Erdefi Rakun","doi":"10.5614/itbj.ict.res.appl.2022.16.3.5","DOIUrl":null,"url":null,"abstract":"The SIBI gesture translation framework by Rakun was built using a series of machine learning technologies: MobileNetV2 for feature extraction, Conditional Random Field for finding the epenthesis movement frame, and Long Short-Term Memory for word classification. This high computational translation system was previously implemented on a personal computer system, which lacks portability and accessibility. This study implemented the system on a smartphone using an on-device inference method: the translation process is embedded into the smartphone to provide lower latency and zero data usage. The system was then improved using a parallel multi-inference method, which reduced the average translation time by 25%. The final mobile SIBI gesture-to-text translation system achieved a word accuracy of 90.560%, a sentence accuracy of 64%, and an average translation time of 20 seconds.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating SIBI (Sign System for Indonesian Gesture) Gesture-to-Text in Real-Time using a Mobile Device\",\"authors\":\"M. Jonathan, Erdefi Rakun\",\"doi\":\"10.5614/itbj.ict.res.appl.2022.16.3.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SIBI gesture translation framework by Rakun was built using a series of machine learning technologies: MobileNetV2 for feature extraction, Conditional Random Field for finding the epenthesis movement frame, and Long Short-Term Memory for word classification. This high computational translation system was previously implemented on a personal computer system, which lacks portability and accessibility. This study implemented the system on a smartphone using an on-device inference method: the translation process is embedded into the smartphone to provide lower latency and zero data usage. The system was then improved using a parallel multi-inference method, which reduced the average translation time by 25%. The final mobile SIBI gesture-to-text translation system achieved a word accuracy of 90.560%, a sentence accuracy of 64%, and an average translation time of 20 seconds.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Translating SIBI (Sign System for Indonesian Gesture) Gesture-to-Text in Real-Time using a Mobile Device
The SIBI gesture translation framework by Rakun was built using a series of machine learning technologies: MobileNetV2 for feature extraction, Conditional Random Field for finding the epenthesis movement frame, and Long Short-Term Memory for word classification. This high computational translation system was previously implemented on a personal computer system, which lacks portability and accessibility. This study implemented the system on a smartphone using an on-device inference method: the translation process is embedded into the smartphone to provide lower latency and zero data usage. The system was then improved using a parallel multi-inference method, which reduced the average translation time by 25%. The final mobile SIBI gesture-to-text translation system achieved a word accuracy of 90.560%, a sentence accuracy of 64%, and an average translation time of 20 seconds.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.