{"title":"千禧年气候事件期间大西洋中深度的碳储存","authors":"M. Lacerra, D. Lund, Jimin Yu, A. Schmittner","doi":"10.1002/2016PA003081","DOIUrl":null,"url":null,"abstract":"Carbon isotope minima were a ubiquitous feature of the mid-depth Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP) and the Younger Dryas (YD, 11.5-12.9 kyr BP) yet their cause remains unclear. Recent evidence indicates that North Atlantic processes triggered the δ13C anomalies, with weakening of the Atlantic Meridional Overturning Circulation (AMOC) being the most likely driver. Model simulations suggest slowing of the AMOC increases the residence time of mid-depth waters in the Atlantic, resulting in the accumulation of respired carbon. Here we assess ΣCO2 storage in the South Atlantic using benthic foraminiferal B/Ca, a proxy for [CO32-]. Using replicated high resolution B/Ca records from ~ 2 km water depth on the Brazil Margin, we show that [CO32-] decreased during HS1 and the YD, synchronous with apparent weakening of the AMOC. The [CO32-] response is smaller than in the tropical North Atlantic during HS1, indicating there was a north-south gradient in the [CO32-] signal similar to that for δ13C. The implied variability in ΣCO2 is consistent with model results, suggesting that carbon is temporarily sequestered in the mid-depth Atlantic during millennial-scale stadial events. Using a carbon isotope mass balance, we estimate that approximately 75% of the HS1 δ13C signal at the Brazil Margin was driven by accumulation of remineralized carbon, highlighting the non-conservative behavior of δ13C during the last deglaciation.","PeriodicalId":19882,"journal":{"name":"Paleoceanography","volume":"32 1","pages":"780-795"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2016PA003081","citationCount":"20","resultStr":"{\"title\":\"Carbon storage in the mid-depth Atlantic during millennial-scale climate events\",\"authors\":\"M. Lacerra, D. Lund, Jimin Yu, A. Schmittner\",\"doi\":\"10.1002/2016PA003081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon isotope minima were a ubiquitous feature of the mid-depth Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP) and the Younger Dryas (YD, 11.5-12.9 kyr BP) yet their cause remains unclear. Recent evidence indicates that North Atlantic processes triggered the δ13C anomalies, with weakening of the Atlantic Meridional Overturning Circulation (AMOC) being the most likely driver. Model simulations suggest slowing of the AMOC increases the residence time of mid-depth waters in the Atlantic, resulting in the accumulation of respired carbon. Here we assess ΣCO2 storage in the South Atlantic using benthic foraminiferal B/Ca, a proxy for [CO32-]. Using replicated high resolution B/Ca records from ~ 2 km water depth on the Brazil Margin, we show that [CO32-] decreased during HS1 and the YD, synchronous with apparent weakening of the AMOC. The [CO32-] response is smaller than in the tropical North Atlantic during HS1, indicating there was a north-south gradient in the [CO32-] signal similar to that for δ13C. The implied variability in ΣCO2 is consistent with model results, suggesting that carbon is temporarily sequestered in the mid-depth Atlantic during millennial-scale stadial events. Using a carbon isotope mass balance, we estimate that approximately 75% of the HS1 δ13C signal at the Brazil Margin was driven by accumulation of remineralized carbon, highlighting the non-conservative behavior of δ13C during the last deglaciation.\",\"PeriodicalId\":19882,\"journal\":{\"name\":\"Paleoceanography\",\"volume\":\"32 1\",\"pages\":\"780-795\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/2016PA003081\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/2016PA003081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/2016PA003081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon storage in the mid-depth Atlantic during millennial-scale climate events
Carbon isotope minima were a ubiquitous feature of the mid-depth Atlantic during Heinrich Stadial 1 (HS1, 14.5-17.5 kyr BP) and the Younger Dryas (YD, 11.5-12.9 kyr BP) yet their cause remains unclear. Recent evidence indicates that North Atlantic processes triggered the δ13C anomalies, with weakening of the Atlantic Meridional Overturning Circulation (AMOC) being the most likely driver. Model simulations suggest slowing of the AMOC increases the residence time of mid-depth waters in the Atlantic, resulting in the accumulation of respired carbon. Here we assess ΣCO2 storage in the South Atlantic using benthic foraminiferal B/Ca, a proxy for [CO32-]. Using replicated high resolution B/Ca records from ~ 2 km water depth on the Brazil Margin, we show that [CO32-] decreased during HS1 and the YD, synchronous with apparent weakening of the AMOC. The [CO32-] response is smaller than in the tropical North Atlantic during HS1, indicating there was a north-south gradient in the [CO32-] signal similar to that for δ13C. The implied variability in ΣCO2 is consistent with model results, suggesting that carbon is temporarily sequestered in the mid-depth Atlantic during millennial-scale stadial events. Using a carbon isotope mass balance, we estimate that approximately 75% of the HS1 δ13C signal at the Brazil Margin was driven by accumulation of remineralized carbon, highlighting the non-conservative behavior of δ13C during the last deglaciation.