{"title":"考虑对CFR-PEEK材料挤压操作性能和力学性能影响的填充参数选择","authors":"H. Noh, Kijung Park, H. Jeon","doi":"10.1108/rpj-11-2022-0380","DOIUrl":null,"url":null,"abstract":"\nPurpose\nAs newer high performance polymers in mechanical properties become available for material extrusion-based additive manufacturing, determining infill parameter settings becomes more important to achieve both operational and mechanical performance of printed outputs. For the material extrusion of carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK), this study aims not only to identify the effects of infill parameters on both operational and mechanical performance but also to derive appropriate infill settings through a multicriteria decision-making process considering the conflicting effects.\n\n\nDesign/methodology/approach\nA full-factorial experimental design to investigate the effects of two major infill parameters (i.e. infill pattern and density) on each performance measure (i.e. printing time, sample mass, energy consumption and maximum tensile load) is separately performed to derive the best infill settings for each measure. Focusing on energy consumption for operational performance and maximum tensile load for mechanical performance, the technique for order preference by similarity to ideal solution is further used to identify the most appropriate infill settings given relative preferences on the conflicting performance measures.\n\n\nFindings\nThe results show that the honeycomb pattern type with 25% density is consistently identified as the best for the operational performance measures, while the triangular pattern with 100% density is the best for the mechanical performance measure. Moreover, it is suggested that certain ranges of preference weights on operational and mechanical performance can guide the best parameter settings for the overall material extrusion performance of CFR-PEEK.\n\n\nOriginality/value\nThe findings from this study can help practitioners selectively decide on infill parameters by considering both operational and mechanical aspects and their possible trade-offs.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of infill parameters considering their effects on operational and mechanical performance for material extrusion of CFR-PEEK\",\"authors\":\"H. Noh, Kijung Park, H. Jeon\",\"doi\":\"10.1108/rpj-11-2022-0380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nAs newer high performance polymers in mechanical properties become available for material extrusion-based additive manufacturing, determining infill parameter settings becomes more important to achieve both operational and mechanical performance of printed outputs. For the material extrusion of carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK), this study aims not only to identify the effects of infill parameters on both operational and mechanical performance but also to derive appropriate infill settings through a multicriteria decision-making process considering the conflicting effects.\\n\\n\\nDesign/methodology/approach\\nA full-factorial experimental design to investigate the effects of two major infill parameters (i.e. infill pattern and density) on each performance measure (i.e. printing time, sample mass, energy consumption and maximum tensile load) is separately performed to derive the best infill settings for each measure. Focusing on energy consumption for operational performance and maximum tensile load for mechanical performance, the technique for order preference by similarity to ideal solution is further used to identify the most appropriate infill settings given relative preferences on the conflicting performance measures.\\n\\n\\nFindings\\nThe results show that the honeycomb pattern type with 25% density is consistently identified as the best for the operational performance measures, while the triangular pattern with 100% density is the best for the mechanical performance measure. Moreover, it is suggested that certain ranges of preference weights on operational and mechanical performance can guide the best parameter settings for the overall material extrusion performance of CFR-PEEK.\\n\\n\\nOriginality/value\\nThe findings from this study can help practitioners selectively decide on infill parameters by considering both operational and mechanical aspects and their possible trade-offs.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-11-2022-0380\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-11-2022-0380","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Selection of infill parameters considering their effects on operational and mechanical performance for material extrusion of CFR-PEEK
Purpose
As newer high performance polymers in mechanical properties become available for material extrusion-based additive manufacturing, determining infill parameter settings becomes more important to achieve both operational and mechanical performance of printed outputs. For the material extrusion of carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK), this study aims not only to identify the effects of infill parameters on both operational and mechanical performance but also to derive appropriate infill settings through a multicriteria decision-making process considering the conflicting effects.
Design/methodology/approach
A full-factorial experimental design to investigate the effects of two major infill parameters (i.e. infill pattern and density) on each performance measure (i.e. printing time, sample mass, energy consumption and maximum tensile load) is separately performed to derive the best infill settings for each measure. Focusing on energy consumption for operational performance and maximum tensile load for mechanical performance, the technique for order preference by similarity to ideal solution is further used to identify the most appropriate infill settings given relative preferences on the conflicting performance measures.
Findings
The results show that the honeycomb pattern type with 25% density is consistently identified as the best for the operational performance measures, while the triangular pattern with 100% density is the best for the mechanical performance measure. Moreover, it is suggested that certain ranges of preference weights on operational and mechanical performance can guide the best parameter settings for the overall material extrusion performance of CFR-PEEK.
Originality/value
The findings from this study can help practitioners selectively decide on infill parameters by considering both operational and mechanical aspects and their possible trade-offs.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation