根据重力数据确定位于黑海陆架西北部的东欧地台南部边界

IF 0.6 Q4 GEOCHEMISTRY & GEOPHYSICS Geofizicheskiy Zhurnal-Geophysical Journal Pub Date : 2022-09-25 DOI:10.24028/gj.v44i4.264841
M. Kozlenko, Y. Kozlenko
{"title":"根据重力数据确定位于黑海陆架西北部的东欧地台南部边界","authors":"M. Kozlenko, Y. Kozlenko","doi":"10.24028/gj.v44i4.264841","DOIUrl":null,"url":null,"abstract":"The work is devoted to the problem of determining the position of the border of the East European Platform (EEP) and the Scythian Plate (SP), which is of great economic importance in dividing the north-western shelf of the Black Sea into more and less promising areas for hydrocarbons. An analysis of the allocation of the juncture of EEP and SP using 23 literature sources published from 1985 to 2020 was performed. The essential differences in drawing the relevant line by different authors are shown. A method for determining the position of the southern boundary of the EEP within the north-western shelf of the Black Sea is proposed, based on the integrated use of gravimetry data — characteristic features of the gravity field (Δgf.a.) and the results of systematic two-dimensional density modeling. The outcome of modelling allowed determining the position and nature of the EEP and SP junction in the section of the earth’s crust, which turned out to be a transcrustal fracture of the southern falling with angles of inclination from 83.5° to 85.5° in different parts of the shelf. According to calculations of the exit points of the faults on the basement surface superimposed on the scheme Δgf.a made it possible to identify the spatial position of the junction of EEP and SP and its extension outside the modeling area for the entire study area. It is established that this line has a zigzag character, changing direction at the intersection with submeridional faults. It is shown that the formation of the southern boundary of EPS was controlled, except for the submeridional component characteristic of EPS, by three other systems — latitude, directions NE-SW and NW-SE, which are observed for tectonic elements of SP in Pridobruzha and Crimea. The correctness of the determination of the boundary position by gravimetric data is confirmed by the results of seismic stratigraphy and thermometry previously obtained by other researchers.","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Locating the southern boundary of the East European Platform within the north-western Black Sea shelf according to gravimetric data\",\"authors\":\"M. Kozlenko, Y. Kozlenko\",\"doi\":\"10.24028/gj.v44i4.264841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the problem of determining the position of the border of the East European Platform (EEP) and the Scythian Plate (SP), which is of great economic importance in dividing the north-western shelf of the Black Sea into more and less promising areas for hydrocarbons. An analysis of the allocation of the juncture of EEP and SP using 23 literature sources published from 1985 to 2020 was performed. The essential differences in drawing the relevant line by different authors are shown. A method for determining the position of the southern boundary of the EEP within the north-western shelf of the Black Sea is proposed, based on the integrated use of gravimetry data — characteristic features of the gravity field (Δgf.a.) and the results of systematic two-dimensional density modeling. The outcome of modelling allowed determining the position and nature of the EEP and SP junction in the section of the earth’s crust, which turned out to be a transcrustal fracture of the southern falling with angles of inclination from 83.5° to 85.5° in different parts of the shelf. According to calculations of the exit points of the faults on the basement surface superimposed on the scheme Δgf.a made it possible to identify the spatial position of the junction of EEP and SP and its extension outside the modeling area for the entire study area. It is established that this line has a zigzag character, changing direction at the intersection with submeridional faults. It is shown that the formation of the southern boundary of EPS was controlled, except for the submeridional component characteristic of EPS, by three other systems — latitude, directions NE-SW and NW-SE, which are observed for tectonic elements of SP in Pridobruzha and Crimea. The correctness of the determination of the boundary position by gravimetric data is confirmed by the results of seismic stratigraphy and thermometry previously obtained by other researchers.\",\"PeriodicalId\":54141,\"journal\":{\"name\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizicheskiy Zhurnal-Geophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24028/gj.v44i4.264841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gj.v44i4.264841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

这项工作致力于确定东欧地台(EEP)和斯基泰亚板块(SP)边界的位置,这对于将黑海西北陆架划分为越来越不看好碳氢化合物的区域具有重要的经济意义。使用1985年至2020年发表的23篇文献对EEP和SP交界处的分配进行了分析。显示了不同作者在绘制相关线条时的本质差异。在综合利用重力测量数据——重力场特征(Δgf.A)和系统二维密度建模结果的基础上,提出了一种确定黑海西北陆架EEP南部边界位置的方法。建模的结果使我们能够确定地壳剖面中EEP和SP交界处的位置和性质,这是南部瀑布的跨地壳断裂,在陆架的不同部分倾斜角度为83.5°至85.5°。根据叠加在方案Δgf.a上的基底表面断层出口点的计算,可以识别整个研究区域的EEP和SP交界处及其在建模区域外的延伸的空间位置。研究表明,该线具有之字形特征,在与水下断层相交处改变方向。结果表明,除了EPS的潜水分量特征外,EPS南部边界的形成受Pridobruzha和克里米亚SP构造单元观测到的其他三个系统——纬度、NE-SW和NW-SE的控制。其他研究人员先前获得的地震地层学和温度测量结果证实了重力数据确定边界位置的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locating the southern boundary of the East European Platform within the north-western Black Sea shelf according to gravimetric data
The work is devoted to the problem of determining the position of the border of the East European Platform (EEP) and the Scythian Plate (SP), which is of great economic importance in dividing the north-western shelf of the Black Sea into more and less promising areas for hydrocarbons. An analysis of the allocation of the juncture of EEP and SP using 23 literature sources published from 1985 to 2020 was performed. The essential differences in drawing the relevant line by different authors are shown. A method for determining the position of the southern boundary of the EEP within the north-western shelf of the Black Sea is proposed, based on the integrated use of gravimetry data — characteristic features of the gravity field (Δgf.a.) and the results of systematic two-dimensional density modeling. The outcome of modelling allowed determining the position and nature of the EEP and SP junction in the section of the earth’s crust, which turned out to be a transcrustal fracture of the southern falling with angles of inclination from 83.5° to 85.5° in different parts of the shelf. According to calculations of the exit points of the faults on the basement surface superimposed on the scheme Δgf.a made it possible to identify the spatial position of the junction of EEP and SP and its extension outside the modeling area for the entire study area. It is established that this line has a zigzag character, changing direction at the intersection with submeridional faults. It is shown that the formation of the southern boundary of EPS was controlled, except for the submeridional component characteristic of EPS, by three other systems — latitude, directions NE-SW and NW-SE, which are observed for tectonic elements of SP in Pridobruzha and Crimea. The correctness of the determination of the boundary position by gravimetric data is confirmed by the results of seismic stratigraphy and thermometry previously obtained by other researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofizicheskiy Zhurnal-Geophysical Journal
Geofizicheskiy Zhurnal-Geophysical Journal GEOCHEMISTRY & GEOPHYSICS-
自引率
60.00%
发文量
50
期刊最新文献
Electrical conductivity anomalies study New palaeomagnetic data for Palaeoproterozoic AMCG complexes of the Ukrainian Shield Depth structure of the Transcarpathian Depression (Ukrainian part) according to density modeling data Development of the methodology of energy and environmental safety of Ukraine based on own geothermics The effect of the mantle and core matter phase state on the course of geodynamic processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1