基于Alexnet的人体手臂深度信息运动预测

Jing Zhu, ShuoJin Li, Ruonan Ma, Jingwang Cheng
{"title":"基于Alexnet的人体手臂深度信息运动预测","authors":"Jing Zhu, ShuoJin Li, Ruonan Ma, Jingwang Cheng","doi":"10.5121/IJAIA.2019.10402","DOIUrl":null,"url":null,"abstract":"The development of convolutional neural networks(CNN) has provided a new tool to make classification and prediction of human's body motion. This project tends to predict the drop point of a ball thrown out by experimenters by classifying the motion of their body in the process of throwing. Kinect sensor v2 is used to record depth maps and the drop points are recorded by a square infrared induction module. Firstly, convolutional neural networks are made use of to put the data obtained from depth maps in and get the prediction of drop point according to experimenters' motion. Secondly, huge amount of data is used to train the networks of different structure, and a network structure that could provide high enough accuracy for drop point prediction is established. The network model and parameters are modified to improve the accuracy of the prediction algorithm. Finally, the experimental data is divided into a training group and a test group. The prediction results of test group reflect that the prediction algorithm effectively improves the accuracy of human motion perception.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10402","citationCount":"0","resultStr":"{\"title\":\"Motion Prediction Using Depth Information of Human Arm Based on Alexnet\",\"authors\":\"Jing Zhu, ShuoJin Li, Ruonan Ma, Jingwang Cheng\",\"doi\":\"10.5121/IJAIA.2019.10402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of convolutional neural networks(CNN) has provided a new tool to make classification and prediction of human's body motion. This project tends to predict the drop point of a ball thrown out by experimenters by classifying the motion of their body in the process of throwing. Kinect sensor v2 is used to record depth maps and the drop points are recorded by a square infrared induction module. Firstly, convolutional neural networks are made use of to put the data obtained from depth maps in and get the prediction of drop point according to experimenters' motion. Secondly, huge amount of data is used to train the networks of different structure, and a network structure that could provide high enough accuracy for drop point prediction is established. The network model and parameters are modified to improve the accuracy of the prediction algorithm. Finally, the experimental data is divided into a training group and a test group. The prediction results of test group reflect that the prediction algorithm effectively improves the accuracy of human motion perception.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10402\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2019.10402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络的发展为人体运动的分类和预测提供了一种新的工具。该项目倾向于通过对实验者投掷过程中身体的运动进行分类来预测实验者扔出的球的落点。Kinect传感器v2用于记录深度图,落点由方形红外感应模块记录。首先,利用卷积神经网络将从深度图中获得的数据放入其中,并根据实验者的运动得到下降点的预测。其次,利用大量的数据对不同结构的网络进行训练,建立了一种能够为落点预测提供足够高精度的网络结构。对网络模型和参数进行了修改,以提高预测算法的准确性。最后,将实验数据分为训练组和测试组。测试组的预测结果表明,该预测算法有效地提高了人体运动感知的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion Prediction Using Depth Information of Human Arm Based on Alexnet
The development of convolutional neural networks(CNN) has provided a new tool to make classification and prediction of human's body motion. This project tends to predict the drop point of a ball thrown out by experimenters by classifying the motion of their body in the process of throwing. Kinect sensor v2 is used to record depth maps and the drop points are recorded by a square infrared induction module. Firstly, convolutional neural networks are made use of to put the data obtained from depth maps in and get the prediction of drop point according to experimenters' motion. Secondly, huge amount of data is used to train the networks of different structure, and a network structure that could provide high enough accuracy for drop point prediction is established. The network model and parameters are modified to improve the accuracy of the prediction algorithm. Finally, the experimental data is divided into a training group and a test group. The prediction results of test group reflect that the prediction algorithm effectively improves the accuracy of human motion perception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1