Zettabyte时代Jeffreys-Lindley悖论的真实概念、相关性及其解决方案

Miodrag Lovric
{"title":"Zettabyte时代Jeffreys-Lindley悖论的真实概念、相关性及其解决方案","authors":"Miodrag Lovric","doi":"10.22237/jmasm/1556670180","DOIUrl":null,"url":null,"abstract":"The Jeffreys-Lindley paradox is the most quoted divergence between the frequentist and Bayesian approaches to statistical inference. It is embedded in the very foundations of statistics and divides frequentist and Bayesian inference in an irreconcilable way. This paradox is the Gordian Knot of statistical inference and Data Science in the Zettabyte Era. If statistical science is ready for revolution confronted by the challenges of massive data sets analysis, the first step is to finally solve this anomaly. For more than sixty years, the Jeffreys-Lindley paradox has been under active discussion and debate. Many solutions have been proposed, none entirely satisfactory. The Jeffreys-Lindley paradox and its extent have been frequently misunderstood by many statisticians and non-statisticians. This paper aims to reassess this paradox, shed new light on it, and indicates how often it occurs in practice when dealing with Big data.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Authentic Notion, Relevance, and Solution of the Jeffreys-Lindley Paradox in the Zettabyte Era\",\"authors\":\"Miodrag Lovric\",\"doi\":\"10.22237/jmasm/1556670180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Jeffreys-Lindley paradox is the most quoted divergence between the frequentist and Bayesian approaches to statistical inference. It is embedded in the very foundations of statistics and divides frequentist and Bayesian inference in an irreconcilable way. This paradox is the Gordian Knot of statistical inference and Data Science in the Zettabyte Era. If statistical science is ready for revolution confronted by the challenges of massive data sets analysis, the first step is to finally solve this anomaly. For more than sixty years, the Jeffreys-Lindley paradox has been under active discussion and debate. Many solutions have been proposed, none entirely satisfactory. The Jeffreys-Lindley paradox and its extent have been frequently misunderstood by many statisticians and non-statisticians. This paper aims to reassess this paradox, shed new light on it, and indicates how often it occurs in practice when dealing with Big data.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1556670180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1556670180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

杰弗里斯-林德利悖论是频率论和贝叶斯统计推理方法之间引用最多的分歧。它植根于统计学的基础之上,并以一种不可调和的方式将频率论和贝叶斯推理区分开来。这个悖论是Zettabyte时代统计推理和数据科学的戈迪亚结。如果统计科学已经做好了应对大规模数据集分析挑战的革命准备,那么第一步就是最终解决这种异常现象。60多年来,杰弗里斯-林德利悖论一直受到人们的积极讨论和争论。已经提出了许多解决方案,但没有一个完全令人满意。杰弗里斯-林德利悖论及其程度经常被许多统计学家和非统计学家误解。本文旨在重新评估这一悖论,对其进行新的阐释,并指出在处理大数据时,它在实践中发生的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Authentic Notion, Relevance, and Solution of the Jeffreys-Lindley Paradox in the Zettabyte Era
The Jeffreys-Lindley paradox is the most quoted divergence between the frequentist and Bayesian approaches to statistical inference. It is embedded in the very foundations of statistics and divides frequentist and Bayesian inference in an irreconcilable way. This paradox is the Gordian Knot of statistical inference and Data Science in the Zettabyte Era. If statistical science is ready for revolution confronted by the challenges of massive data sets analysis, the first step is to finally solve this anomaly. For more than sixty years, the Jeffreys-Lindley paradox has been under active discussion and debate. Many solutions have been proposed, none entirely satisfactory. The Jeffreys-Lindley paradox and its extent have been frequently misunderstood by many statisticians and non-statisticians. This paper aims to reassess this paradox, shed new light on it, and indicates how often it occurs in practice when dealing with Big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
期刊最新文献
The Performance of the Maximum Likelihood Estimator for the Bell Distribution for Count Data Proportionality Adjusted Ratio-Type Calibration Estimators of Population Mean Under Stratified Sampling Moment Properties of Record Values from Rayleigh Lomax Distribution and Characterization Smoothing of Estimators of Population mean using Calibration Technique with Sample Errors Bayesian Estimation and Prediction for Inverse Power Maxwell Distribution with Applications to Tax Revenue and Health Care Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1