水平井和斜井井筒清洗机理模型

IF 1.3 4区 工程技术 Q3 ENGINEERING, PETROLEUM SPE Drilling & Completion Pub Date : 2021-04-01 DOI:10.2118/204442-PA
R. Elgaddafi, R. Ahmed, H. Karami, M. Nasser, I. Hussein
{"title":"水平井和斜井井筒清洗机理模型","authors":"R. Elgaddafi, R. Ahmed, H. Karami, M. Nasser, I. Hussein","doi":"10.2118/204442-PA","DOIUrl":null,"url":null,"abstract":"\n The accumulation of rock cuttings, proppant, and other solid debris in the wellbore caused by inadequate cleanout remarkably impedes field operations. The cuttings removal process becomes a more challenging task as the coiled-tubing techniques are used during drilling and fracturing operations. This article presents a new hole cleaning model, which calculates the critical transport velocity (CTV) in conventional and fibrous water-based fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells.\n The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e., fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are used to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height.\n The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional water-based fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate caused by the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model overpredicts the cleaning performance of both conventional and fibrous water-basedmuds.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":"1 1","pages":"1-17"},"PeriodicalIF":1.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Mechanistic Model for Wellbore Cleanout in Horizontal and Inclined Wells\",\"authors\":\"R. Elgaddafi, R. Ahmed, H. Karami, M. Nasser, I. Hussein\",\"doi\":\"10.2118/204442-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The accumulation of rock cuttings, proppant, and other solid debris in the wellbore caused by inadequate cleanout remarkably impedes field operations. The cuttings removal process becomes a more challenging task as the coiled-tubing techniques are used during drilling and fracturing operations. This article presents a new hole cleaning model, which calculates the critical transport velocity (CTV) in conventional and fibrous water-based fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells.\\n The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e., fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are used to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height.\\n The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional water-based fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate caused by the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model overpredicts the cleaning performance of both conventional and fibrous water-basedmuds.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\"1 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/204442-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/204442-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 5

摘要

由于清洗不充分,岩屑、支撑剂和其他固体碎屑在井筒中堆积,严重阻碍了现场作业。随着连续油管技术在钻井和压裂作业中的应用,岩屑清除过程变得更具挑战性。提出了一种新的井眼清洗模型,计算了常规和纤维状水基流体的临界输运速度(CTV)。该研究旨在为水平井和斜井的井筒清洗优化建立精确的机理模型。建立了新的CTV模型来预测洗井过程中床层颗粒运动的开始。该模型考虑了纤维的影响,使用了一个特殊的阻力系数(即纤维阻力系数)来建立模型,该系数代表了悬浮纤维颗粒及其网络的力学和水动力作用。考虑了作用在单床颗粒上的主导力来建立模型。此外,为了提高模型的精度,采用最近发展的水力相关性来计算平均床层剪应力,这是确定CTV所需的。在水平井和大斜度井中,井筒几何形状往往偏心,导致形成难以清洗的流动停滞区。这些区域的床层剪切应力对床层厚度很敏感。现有的井筒清洗模型没有考虑到地层剪切应力的变化。因此,当停滞区形成时,它们的精度受到限制。新模型通过纳入水力相关性来解释床层剪切应力随床层高度的变化,从而解决了这一问题。用已发表的测量数据验证了新模型的精度,并与现有模型的精度进行了比较。纤维阻力和床层剪切应力相关性的使用提高了模型的准确性,并有助于捕捉纤维对改善井筒清洗的贡献。因此,对于纤维和常规水基流体,新模型的预测结果与实验测量结果非常吻合,并且提供了比现有模型更好的预测结果。模型预测表明,在流体中加入少量纤维(0.04% w/w)会显著降低流体循环速率。此外,结果表明,现有模型高估了常规和纤维型水基泥浆的清洗性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Mechanistic Model for Wellbore Cleanout in Horizontal and Inclined Wells
The accumulation of rock cuttings, proppant, and other solid debris in the wellbore caused by inadequate cleanout remarkably impedes field operations. The cuttings removal process becomes a more challenging task as the coiled-tubing techniques are used during drilling and fracturing operations. This article presents a new hole cleaning model, which calculates the critical transport velocity (CTV) in conventional and fibrous water-based fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells. The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e., fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are used to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height. The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional water-based fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate caused by the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model overpredicts the cleaning performance of both conventional and fibrous water-basedmuds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Drilling & Completion
SPE Drilling & Completion 工程技术-工程:石油
CiteScore
4.20
自引率
7.10%
发文量
29
审稿时长
6-12 weeks
期刊介绍: Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.
期刊最新文献
Combining Magnetic and Gyroscopic Surveys Provides the Best Possible Accuracy Applications of Machine Learning Methods to Predict Hole Cleaning in Horizontal and Highly Deviated Wells Experimental Investigation of Geopolymers for Application in High-Temperature and Geothermal Well Cementing Analysis of Riser Gas Pressure from Full-Scale Gas-in-Riser Experiments with Instrumentation Correlating Surface and Downhole Perforation Entry Hole Measurements Leads to Development of Improved Perforating Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1