{"title":"Y2O3增强镁稀土合金的线放电车削加工","authors":"V. M, Ramanujam R, Gururaj Parande, M. Gupta","doi":"10.1080/10910344.2022.2044852","DOIUrl":null,"url":null,"abstract":"Abstract Advanced machining has become one of the inevitable processes for the fabrication of miniature industrial components that demands high dimensional accuracy. Magnesium (Mg) and its composites have widespread applications in the areas of aerospace, medical, and automobile sectors. The objective of this work is to analyze the machinability of Mg—rare earth (RE) alloy (Mg3Al2.5La)-based nanocomposites using wire electrical discharge turning (WEDT), a variant of EDM process. Y2O3 (0.6 and 1.9%) reinforced magnesium composites are prepared through disintegrated melt deposition technique. SEM and XRD analyses confirmed the intermetallic phase formation, such as Al11La3, and Al2La. Machining experiments are conducted with input parameters: discharge ON time, wire feed and spindle rotational speed each varied at three levels to study surface roughness (Ra) and volume of material removed (MRR). Results showed that Ra of the machined samples increases and MRR decreases, with the increase in % reinforcement and discharge ON time. The lower Ra value of 2.985 µm and higher MRR of 34.85 mm3/min are observed for the Mg3Al2.5La sample. This result is attributed to the absence of particle pullout and increased thermal conductivity of magnesium alloy during machining. Prediction analysis based on mean values is carried out to confirm the accuracy of the experimental results at optimal parametric levels.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machining of Y2O3 reinforced magnesium rare earth alloys using wire electrical discharge turning process\",\"authors\":\"V. M, Ramanujam R, Gururaj Parande, M. Gupta\",\"doi\":\"10.1080/10910344.2022.2044852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Advanced machining has become one of the inevitable processes for the fabrication of miniature industrial components that demands high dimensional accuracy. Magnesium (Mg) and its composites have widespread applications in the areas of aerospace, medical, and automobile sectors. The objective of this work is to analyze the machinability of Mg—rare earth (RE) alloy (Mg3Al2.5La)-based nanocomposites using wire electrical discharge turning (WEDT), a variant of EDM process. Y2O3 (0.6 and 1.9%) reinforced magnesium composites are prepared through disintegrated melt deposition technique. SEM and XRD analyses confirmed the intermetallic phase formation, such as Al11La3, and Al2La. Machining experiments are conducted with input parameters: discharge ON time, wire feed and spindle rotational speed each varied at three levels to study surface roughness (Ra) and volume of material removed (MRR). Results showed that Ra of the machined samples increases and MRR decreases, with the increase in % reinforcement and discharge ON time. The lower Ra value of 2.985 µm and higher MRR of 34.85 mm3/min are observed for the Mg3Al2.5La sample. This result is attributed to the absence of particle pullout and increased thermal conductivity of magnesium alloy during machining. Prediction analysis based on mean values is carried out to confirm the accuracy of the experimental results at optimal parametric levels.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2022.2044852\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2044852","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Machining of Y2O3 reinforced magnesium rare earth alloys using wire electrical discharge turning process
Abstract Advanced machining has become one of the inevitable processes for the fabrication of miniature industrial components that demands high dimensional accuracy. Magnesium (Mg) and its composites have widespread applications in the areas of aerospace, medical, and automobile sectors. The objective of this work is to analyze the machinability of Mg—rare earth (RE) alloy (Mg3Al2.5La)-based nanocomposites using wire electrical discharge turning (WEDT), a variant of EDM process. Y2O3 (0.6 and 1.9%) reinforced magnesium composites are prepared through disintegrated melt deposition technique. SEM and XRD analyses confirmed the intermetallic phase formation, such as Al11La3, and Al2La. Machining experiments are conducted with input parameters: discharge ON time, wire feed and spindle rotational speed each varied at three levels to study surface roughness (Ra) and volume of material removed (MRR). Results showed that Ra of the machined samples increases and MRR decreases, with the increase in % reinforcement and discharge ON time. The lower Ra value of 2.985 µm and higher MRR of 34.85 mm3/min are observed for the Mg3Al2.5La sample. This result is attributed to the absence of particle pullout and increased thermal conductivity of magnesium alloy during machining. Prediction analysis based on mean values is carried out to confirm the accuracy of the experimental results at optimal parametric levels.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining