{"title":"基于超参数优化的客户流失预测的监督学习算法","authors":"Manal Loukili","doi":"10.15849/ijasca.221128.04","DOIUrl":null,"url":null,"abstract":"Abstract Churn risk is one of the most worrying issues in the telecommunications industry. The methods for predicting churn have been improved to a great extent by the remarkable developments in the word of artificial intelligence and machine learning. In this context, a comparative study of four machine learning models was conducted. The first phase consists of data preprocessing, followed by feature analysis. In the third phase, feature selection. Then, the data is split into the training set and the test set. During the prediction phase, some of the commonly used predictive models were adopted, namely k-nearest neighbor, logistic regression, random forest, and support vector machine. Furthermore, we used cross-validation on the training set for hyperparameter adjustment and for avoiding model overfitting. Next, the hyperparameters were adjusted to increase the models' performance. The results obtained on the test set were evaluated using the feature weights, confusion matrix, accuracy score, precision, recall, error rate, and f1 score. Finally, it was found that the support vector machine model outperformed the other prediction models with an accuracy equal to 96.92%. Keywords: Churn Prediction, Classification Algorithms, Hyperparameter Optimization, Machine Learning, Telecommunications.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization\",\"authors\":\"Manal Loukili\",\"doi\":\"10.15849/ijasca.221128.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Churn risk is one of the most worrying issues in the telecommunications industry. The methods for predicting churn have been improved to a great extent by the remarkable developments in the word of artificial intelligence and machine learning. In this context, a comparative study of four machine learning models was conducted. The first phase consists of data preprocessing, followed by feature analysis. In the third phase, feature selection. Then, the data is split into the training set and the test set. During the prediction phase, some of the commonly used predictive models were adopted, namely k-nearest neighbor, logistic regression, random forest, and support vector machine. Furthermore, we used cross-validation on the training set for hyperparameter adjustment and for avoiding model overfitting. Next, the hyperparameters were adjusted to increase the models' performance. The results obtained on the test set were evaluated using the feature weights, confusion matrix, accuracy score, precision, recall, error rate, and f1 score. Finally, it was found that the support vector machine model outperformed the other prediction models with an accuracy equal to 96.92%. Keywords: Churn Prediction, Classification Algorithms, Hyperparameter Optimization, Machine Learning, Telecommunications.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.221128.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.221128.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Supervised Learning Algorithms for Predicting Customer Churn with Hyperparameter Optimization
Abstract Churn risk is one of the most worrying issues in the telecommunications industry. The methods for predicting churn have been improved to a great extent by the remarkable developments in the word of artificial intelligence and machine learning. In this context, a comparative study of four machine learning models was conducted. The first phase consists of data preprocessing, followed by feature analysis. In the third phase, feature selection. Then, the data is split into the training set and the test set. During the prediction phase, some of the commonly used predictive models were adopted, namely k-nearest neighbor, logistic regression, random forest, and support vector machine. Furthermore, we used cross-validation on the training set for hyperparameter adjustment and for avoiding model overfitting. Next, the hyperparameters were adjusted to increase the models' performance. The results obtained on the test set were evaluated using the feature weights, confusion matrix, accuracy score, precision, recall, error rate, and f1 score. Finally, it was found that the support vector machine model outperformed the other prediction models with an accuracy equal to 96.92%. Keywords: Churn Prediction, Classification Algorithms, Hyperparameter Optimization, Machine Learning, Telecommunications.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.