Tong Xia, Yong Li, Yunhan Qi, J. Feng, Fengli Xu, Funing Sun, Diansheng Guo, Depeng Jin
{"title":"基于注意力神经网络的历史增强和不确定性轨迹恢复","authors":"Tong Xia, Yong Li, Yunhan Qi, J. Feng, Fengli Xu, Funing Sun, Diansheng Guo, Depeng Jin","doi":"10.1145/3615660","DOIUrl":null,"url":null,"abstract":"A considerable amount of mobility data has been accumulated due to the proliferation of location-based services. Nevertheless, compared with mobility data from transportation systems like the GPS module in taxis, this kind of data is commonly sparse in terms of individual trajectories in the sense that users do not access mobile services and contribute their data all the time. Consequently, the sparsity inevitably weakens the practical value of the data even if it has a high user penetration rate. To solve this problem, we propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations at a fine-grained spatial-temporal resolution. To tackle the challenges posed by sparsity, we design various intra- and inter- trajectory attention mechanisms to better model the mobility regularity of users and fully exploit the periodical pattern from long-term history. In addition, to guarantee the robustness of the generated trajectories to avoid harming downstream applications, we also exploit the Bayesian approximate neural network to estimate the uncertainty of each imputation. As a result, locations generated by the model with high uncertainty will be excluded. We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods. In-depth analyses of each design of our model have been conducted to understand their contribution. We also show that, by providing high-quality mobility data, our model can benefit a variety of mobility-oriented downstream applications.","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"History-enhanced and Uncertainty-aware Trajectory Recovery via Attentive Neural Network\",\"authors\":\"Tong Xia, Yong Li, Yunhan Qi, J. Feng, Fengli Xu, Funing Sun, Diansheng Guo, Depeng Jin\",\"doi\":\"10.1145/3615660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A considerable amount of mobility data has been accumulated due to the proliferation of location-based services. Nevertheless, compared with mobility data from transportation systems like the GPS module in taxis, this kind of data is commonly sparse in terms of individual trajectories in the sense that users do not access mobile services and contribute their data all the time. Consequently, the sparsity inevitably weakens the practical value of the data even if it has a high user penetration rate. To solve this problem, we propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations at a fine-grained spatial-temporal resolution. To tackle the challenges posed by sparsity, we design various intra- and inter- trajectory attention mechanisms to better model the mobility regularity of users and fully exploit the periodical pattern from long-term history. In addition, to guarantee the robustness of the generated trajectories to avoid harming downstream applications, we also exploit the Bayesian approximate neural network to estimate the uncertainty of each imputation. As a result, locations generated by the model with high uncertainty will be excluded. We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods. In-depth analyses of each design of our model have been conducted to understand their contribution. We also show that, by providing high-quality mobility data, our model can benefit a variety of mobility-oriented downstream applications.\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3615660\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3615660","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
History-enhanced and Uncertainty-aware Trajectory Recovery via Attentive Neural Network
A considerable amount of mobility data has been accumulated due to the proliferation of location-based services. Nevertheless, compared with mobility data from transportation systems like the GPS module in taxis, this kind of data is commonly sparse in terms of individual trajectories in the sense that users do not access mobile services and contribute their data all the time. Consequently, the sparsity inevitably weakens the practical value of the data even if it has a high user penetration rate. To solve this problem, we propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations at a fine-grained spatial-temporal resolution. To tackle the challenges posed by sparsity, we design various intra- and inter- trajectory attention mechanisms to better model the mobility regularity of users and fully exploit the periodical pattern from long-term history. In addition, to guarantee the robustness of the generated trajectories to avoid harming downstream applications, we also exploit the Bayesian approximate neural network to estimate the uncertainty of each imputation. As a result, locations generated by the model with high uncertainty will be excluded. We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods. In-depth analyses of each design of our model have been conducted to understand their contribution. We also show that, by providing high-quality mobility data, our model can benefit a variety of mobility-oriented downstream applications.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.