{"title":"保体积平均曲率流的弱-强唯一性","authors":"Tim Laux","doi":"10.4171/rmi/1395","DOIUrl":null,"url":null,"abstract":"In this note, we derive a stability and weak-strong uniqueness principle for volume-preserving mean curvature flow. The proof is based on a new notion of volume-preserving gradient flow calibrations, which is a natural extension of the concept in the case without volume preservation recently introduced by Fischer et al. [arXiv:2003.05478]. The first main result shows that any strong solution with certain regularity is calibrated. The second main result consists of a stability estimate in terms of a relative entropy, which is valid in the class of distributional solutions to volume-preserving mean curvature flow.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Weak-strong uniqueness for volume-preserving mean curvature flow\",\"authors\":\"Tim Laux\",\"doi\":\"10.4171/rmi/1395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we derive a stability and weak-strong uniqueness principle for volume-preserving mean curvature flow. The proof is based on a new notion of volume-preserving gradient flow calibrations, which is a natural extension of the concept in the case without volume preservation recently introduced by Fischer et al. [arXiv:2003.05478]. The first main result shows that any strong solution with certain regularity is calibrated. The second main result consists of a stability estimate in terms of a relative entropy, which is valid in the class of distributional solutions to volume-preserving mean curvature flow.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1395\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1395","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weak-strong uniqueness for volume-preserving mean curvature flow
In this note, we derive a stability and weak-strong uniqueness principle for volume-preserving mean curvature flow. The proof is based on a new notion of volume-preserving gradient flow calibrations, which is a natural extension of the concept in the case without volume preservation recently introduced by Fischer et al. [arXiv:2003.05478]. The first main result shows that any strong solution with certain regularity is calibrated. The second main result consists of a stability estimate in terms of a relative entropy, which is valid in the class of distributional solutions to volume-preserving mean curvature flow.
期刊介绍:
Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.