{"title":"学术话语中启发式语篇实践的分类","authors":"Maria Becker, M. Bender, Marcus Müller","doi":"10.1075/ijcl.19097.bec","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how deep learning techniques can be applied to discourse pragmatics. As a testcase we analyse heuristic textual practices, defined as linguistic implementations of decision routines in research processes in academic discourse. We develop a complex annotation scheme of pragmalinguistic categories on different levels of granularity and manually annotate a corpus of texts across various scientific disciplines. This is the basis for training recurrent neural networks to classify heuristic textual practices. Our experiments show that the annotation categories are robust enough to be recognised by our models which learn similarities of the sentence-surfaces represented as word embeddings. Our study aims at an iterative human-in-the-loop process in which manual-hermeneutic and algorithmic procedures mutually advance the insight process. It underlines the fact that the interaction between manual and automated methods opens up a promising field for further research, allowing interpretative analyses of complex pragmatic phenomena in large corpora.","PeriodicalId":46843,"journal":{"name":"International Journal of Corpus Linguistics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classifying heuristic textual practices in academic discourse\",\"authors\":\"Maria Becker, M. Bender, Marcus Müller\",\"doi\":\"10.1075/ijcl.19097.bec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate how deep learning techniques can be applied to discourse pragmatics. As a testcase we analyse heuristic textual practices, defined as linguistic implementations of decision routines in research processes in academic discourse. We develop a complex annotation scheme of pragmalinguistic categories on different levels of granularity and manually annotate a corpus of texts across various scientific disciplines. This is the basis for training recurrent neural networks to classify heuristic textual practices. Our experiments show that the annotation categories are robust enough to be recognised by our models which learn similarities of the sentence-surfaces represented as word embeddings. Our study aims at an iterative human-in-the-loop process in which manual-hermeneutic and algorithmic procedures mutually advance the insight process. It underlines the fact that the interaction between manual and automated methods opens up a promising field for further research, allowing interpretative analyses of complex pragmatic phenomena in large corpora.\",\"PeriodicalId\":46843,\"journal\":{\"name\":\"International Journal of Corpus Linguistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Corpus Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1075/ijcl.19097.bec\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Corpus Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1075/ijcl.19097.bec","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Classifying heuristic textual practices in academic discourse
In this paper, we investigate how deep learning techniques can be applied to discourse pragmatics. As a testcase we analyse heuristic textual practices, defined as linguistic implementations of decision routines in research processes in academic discourse. We develop a complex annotation scheme of pragmalinguistic categories on different levels of granularity and manually annotate a corpus of texts across various scientific disciplines. This is the basis for training recurrent neural networks to classify heuristic textual practices. Our experiments show that the annotation categories are robust enough to be recognised by our models which learn similarities of the sentence-surfaces represented as word embeddings. Our study aims at an iterative human-in-the-loop process in which manual-hermeneutic and algorithmic procedures mutually advance the insight process. It underlines the fact that the interaction between manual and automated methods opens up a promising field for further research, allowing interpretative analyses of complex pragmatic phenomena in large corpora.
期刊介绍:
The International Journal of Corpus Linguistics (IJCL) publishes original research covering methodological, applied and theoretical work in any area of corpus linguistics. Through its focus on empirical language research, IJCL provides a forum for the presentation of new findings and innovative approaches in any area of linguistics (e.g. lexicology, grammar, discourse analysis, stylistics, sociolinguistics, morphology, contrastive linguistics), applied linguistics (e.g. language teaching, forensic linguistics), and translation studies. Based on its interest in corpus methodology, IJCL also invites contributions on the interface between corpus and computational linguistics.