蜻蜓的翅膀是如何工作的?简要介绍机翼结构部件的功能作用

IF 1 4区 农林科学 Q3 ENTOMOLOGY International Journal of Odonatology Pub Date : 2020-01-02 DOI:10.1080/13887890.2019.1677515
H. Rajabi, S. Gorb
{"title":"蜻蜓的翅膀是如何工作的?简要介绍机翼结构部件的功能作用","authors":"H. Rajabi, S. Gorb","doi":"10.1080/13887890.2019.1677515","DOIUrl":null,"url":null,"abstract":"Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.","PeriodicalId":50297,"journal":{"name":"International Journal of Odonatology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13887890.2019.1677515","citationCount":"20","resultStr":"{\"title\":\"How do dragonfly wings work? A brief guide to functional roles of wing structural components\",\"authors\":\"H. Rajabi, S. Gorb\",\"doi\":\"10.1080/13887890.2019.1677515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.\",\"PeriodicalId\":50297,\"journal\":{\"name\":\"International Journal of Odonatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/13887890.2019.1677515\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Odonatology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/13887890.2019.1677515\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Odonatology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/13887890.2019.1677515","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 20

摘要

昆虫的翅膀没有飞行肌肉,除了位于胸部的那些。然而,它们在飞行过程中不断地对作用在它们身上的力做出反应。这种能力是由机翼的专门设计实现的,在其空气动力学性能中起着关键作用。蜻蜓(异翅目)的翅膀是飞行昆虫中这种自动形状控制的一个极端例子。机翼的功能源于组成机翼的几个结构部件之间复杂的相互作用。本文结合近年来的研究成果,对翅脉、翅膜、翅脉微关节、翅脉结节、翅脉基底复合体和翅脉波纹等翅脉关键组成部分的功能作用进行了综述。我们的研究结果有助于理解复杂蜻蜓翅膀中每个机翼部件的结构,材料和功能之间的关系。我们进一步利用我们的数据来解释翅膀组件之间的相互作用如何为蜻蜓提供功能齐全的翅膀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How do dragonfly wings work? A brief guide to functional roles of wing structural components
Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control among flying insects. The functionality of the wings results from complex interactions between several structural components of which they are composed. Here we put together the results of our recent works, to review the functional roles of some of the key wing components including vein, membrane, vein microjoint, nodus, basal complex and corrugation. Our results help to understand the relationship between the structure, material and function of each of these wing components in complex dragonfly wings. We further use our data to explain how the interactions between the wing components provide dragonflies with fully functional wings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: International Journal of Odonatology (IJO) is aimed at providing a publication outlet for the growing number of students of Odonata. It will address subjects such as the ecology, ethology, physiology, genetics, taxonomy, phylogeny and geographic distribution of species. Reviews will be by invitation, but authors who plan to write a review on a subject of interest to the journal are encouraged to contact the editor.
期刊最新文献
Demography and natural history of the damselfly Mesamphiagrion gaudiimontanum (Coenagrionidae), a Páramo endemic species in the Colombian Andes Reproductive behavior of Erythrodiplax abjecta (Rambur, 1842) from Andean Mountains Evaluation of speculated reproductive habitat for Somatochlora calverti (Corduliidae), a rare and range-restricted dragonfly Geographical variation in size of the three final stadia of Cordulegaster boltonii (Donovan, 1807) larvae in the Iberian Peninsula (Odonata: Cordulegastridae) Paleoecological niche modeling of Epiophlebia (Epiophlebioptera: Epiophlebiidae) reveals continuous distribution during the Last Glacial Maximum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1