实现最佳生物医学分析的评估预测技术

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Grid and Utility Computing Pub Date : 2019-07-18 DOI:10.1504/IJGUC.2019.10020511
Samaher Al-Janabi, M. A. Mahdi
{"title":"实现最佳生物医学分析的评估预测技术","authors":"Samaher Al-Janabi, M. A. Mahdi","doi":"10.1504/IJGUC.2019.10020511","DOIUrl":null,"url":null,"abstract":"Intelligent analysis of prediction data mining techniques is widely used to support optimising future decision-making in many different fields including healthcare and medical diagnoses. These techniques include Chi-squared Automatic Interaction Detection (CHAID), Exchange Chi-squared Automatic Interaction Detection (ECHAID), Random Forest Regression and Classification (RFRC), Multivariate Adaptive Regression Splines (MARS), and Boosted Tree Classifiers and Regression (BTCR). This paper presents the general properties, summary, advantages, and disadvantages of each one. Most importantly, the analysis depends upon the parameters that have been used for building a prediction model for each one. Besides, classifying those techniques according to their main and secondary parameters is another task. Furthermore, the presence and absence of parameters are also compared in order to identify the better sharing of those parameters among the techniques. As a result, the techniques with no randomness and mathematical basis are the most powerful and fast compared with the others.","PeriodicalId":44878,"journal":{"name":"International Journal of Grid and Utility Computing","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Evaluation prediction techniques to achieve optimal biomedical analysis\",\"authors\":\"Samaher Al-Janabi, M. A. Mahdi\",\"doi\":\"10.1504/IJGUC.2019.10020511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent analysis of prediction data mining techniques is widely used to support optimising future decision-making in many different fields including healthcare and medical diagnoses. These techniques include Chi-squared Automatic Interaction Detection (CHAID), Exchange Chi-squared Automatic Interaction Detection (ECHAID), Random Forest Regression and Classification (RFRC), Multivariate Adaptive Regression Splines (MARS), and Boosted Tree Classifiers and Regression (BTCR). This paper presents the general properties, summary, advantages, and disadvantages of each one. Most importantly, the analysis depends upon the parameters that have been used for building a prediction model for each one. Besides, classifying those techniques according to their main and secondary parameters is another task. Furthermore, the presence and absence of parameters are also compared in order to identify the better sharing of those parameters among the techniques. As a result, the techniques with no randomness and mathematical basis are the most powerful and fast compared with the others.\",\"PeriodicalId\":44878,\"journal\":{\"name\":\"International Journal of Grid and Utility Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and Utility Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJGUC.2019.10020511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and Utility Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJGUC.2019.10020511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 44

摘要

智能分析预测数据挖掘技术被广泛用于支持优化未来决策在许多不同的领域,包括医疗保健和医疗诊断。这些技术包括卡方自动交互检测(CHAID)、Exchange卡方自动交互检测(ECHAID)、随机森林回归和分类(RFRC)、多元自适应回归样条(MARS)和增强树分类器和回归(BTCR)。本文介绍了它们的一般特性、综述以及各自的优缺点。最重要的是,分析依赖于已用于为每个模型构建预测模型的参数。此外,根据主要参数和次要参数对这些技术进行分类是另一项任务。此外,还比较了参数的存在和不存在,以确定这些参数在技术之间更好地共享。因此,与其他技术相比,无随机性和数学基础的技术是最强大和最快的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation prediction techniques to achieve optimal biomedical analysis
Intelligent analysis of prediction data mining techniques is widely used to support optimising future decision-making in many different fields including healthcare and medical diagnoses. These techniques include Chi-squared Automatic Interaction Detection (CHAID), Exchange Chi-squared Automatic Interaction Detection (ECHAID), Random Forest Regression and Classification (RFRC), Multivariate Adaptive Regression Splines (MARS), and Boosted Tree Classifiers and Regression (BTCR). This paper presents the general properties, summary, advantages, and disadvantages of each one. Most importantly, the analysis depends upon the parameters that have been used for building a prediction model for each one. Besides, classifying those techniques according to their main and secondary parameters is another task. Furthermore, the presence and absence of parameters are also compared in order to identify the better sharing of those parameters among the techniques. As a result, the techniques with no randomness and mathematical basis are the most powerful and fast compared with the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Grid and Utility Computing
International Journal of Grid and Utility Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.30
自引率
0.00%
发文量
79
期刊最新文献
Performance comparison of various machine learning classifiers using a fusion of LBP, intensity and GLCM feature extraction techniques for thyroid nodules classification SMGSAF: a secure multi-geocasting scheme for npportunistic Networks Cloud computing data privacy protection method based on blockchain Layered management approach to cyber security of IoT solutions Research on the extraction of accounting multi-relationship information based on cloud computing and multimedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1