{"title":"厄瓜多尔东北部亚马逊河上游流域双叉松、马耳犀和红尾犀体温的生态生理学观察","authors":"Marco A. Altamirano-Benavides, G. Woolrich-Piña","doi":"10.29166/siembra.v10i2.4479","DOIUrl":null,"url":null,"abstract":"Ectothermic inhabitants of tropical forests are subjected to constant environmental temperatures, which determine their passive thermoregulatory strategies. We observe these trends during the summer of 2017, in the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber, in a tropical rainforest from the Upper Amazon Basin of Ecuador. D. bifurcus and S. ruber showed a tendency to tigmothermy, whereas R. marina presented tendencies towards heliothermy. Body temperatures (Tbs) did not differ between D. bifurcus and R. marina, but S. ruber presented a lower Tb. Our results suggest that thermal environment is influencing different thermoregulatory strategies as tigmothermy and heliothermy of frogs and toads distributed in tropical environments at low elevation.","PeriodicalId":33590,"journal":{"name":"Siembra","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecophysiological observations on the body temperatures of the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber from upper basin Amazon in northeastern Ecuador\",\"authors\":\"Marco A. Altamirano-Benavides, G. Woolrich-Piña\",\"doi\":\"10.29166/siembra.v10i2.4479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ectothermic inhabitants of tropical forests are subjected to constant environmental temperatures, which determine their passive thermoregulatory strategies. We observe these trends during the summer of 2017, in the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber, in a tropical rainforest from the Upper Amazon Basin of Ecuador. D. bifurcus and S. ruber showed a tendency to tigmothermy, whereas R. marina presented tendencies towards heliothermy. Body temperatures (Tbs) did not differ between D. bifurcus and R. marina, but S. ruber presented a lower Tb. Our results suggest that thermal environment is influencing different thermoregulatory strategies as tigmothermy and heliothermy of frogs and toads distributed in tropical environments at low elevation.\",\"PeriodicalId\":33590,\"journal\":{\"name\":\"Siembra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siembra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29166/siembra.v10i2.4479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siembra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29166/siembra.v10i2.4479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ecophysiological observations on the body temperatures of the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber from upper basin Amazon in northeastern Ecuador
Ectothermic inhabitants of tropical forests are subjected to constant environmental temperatures, which determine their passive thermoregulatory strategies. We observe these trends during the summer of 2017, in the anurans Dendropsophus bifurcus, Rhinella marina, and Scinax ruber, in a tropical rainforest from the Upper Amazon Basin of Ecuador. D. bifurcus and S. ruber showed a tendency to tigmothermy, whereas R. marina presented tendencies towards heliothermy. Body temperatures (Tbs) did not differ between D. bifurcus and R. marina, but S. ruber presented a lower Tb. Our results suggest that thermal environment is influencing different thermoregulatory strategies as tigmothermy and heliothermy of frogs and toads distributed in tropical environments at low elevation.