阿根廷蚂蚁的毒液虹膜毒素在其本土和入侵范围内的变异性

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2023-03-10 DOI:10.1007/s00049-023-00381-3
Isabel Salado, Paloma Álvarez-Blanco, Raphaël Boulay, Olivier Blight, Sílvia Abril, Xim Cerdá, Elena Angulo
{"title":"阿根廷蚂蚁的毒液虹膜毒素在其本土和入侵范围内的变异性","authors":"Isabel Salado,&nbsp;Paloma Álvarez-Blanco,&nbsp;Raphaël Boulay,&nbsp;Olivier Blight,&nbsp;Sílvia Abril,&nbsp;Xim Cerdá,&nbsp;Elena Angulo","doi":"10.1007/s00049-023-00381-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Argentine ant is one of the five worst invasive ants. Recently it has been shown that one of the main compounds of its pygidial gland, iridomyrmecin, is used as a venom against competitors and enemies. Here, we explore the variability in the quantities of iridomyrmecin of individual workers, along a range of locations pertaining to both its native and invasive ranges, in order to know whether its venom could have contributed to the differential invasion success of European supercolonies. We specifically compared the amount of iridomyrmecin among supercolonies in the native range and among three invasive supercolonies: the Main supercolony (the most extended worldwide), the Corsican and the Catalonian supercolonies (both with a restricted distribution in Europe). Our main result is that the variability of the iridomyrmecin is very high. Looking at mean values, we found that the amount of iridomyrmecin of the Main supercolony was the lowest while the highest corresponded to the Corsican supercolony, with the Catalonian and the native range supercolonies having intermediate values. However, variability in the values within each supercolony was similar between supercolonies. This suggests that the success of a given invasive supercolony may not be explained by higher quantities of this defensive compound. Our results open the way for exploring the connection between defensive compounds and the invasion success of this global invader.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"33 1-2","pages":"17 - 27"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-023-00381-3.pdf","citationCount":"0","resultStr":"{\"title\":\"The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges\",\"authors\":\"Isabel Salado,&nbsp;Paloma Álvarez-Blanco,&nbsp;Raphaël Boulay,&nbsp;Olivier Blight,&nbsp;Sílvia Abril,&nbsp;Xim Cerdá,&nbsp;Elena Angulo\",\"doi\":\"10.1007/s00049-023-00381-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Argentine ant is one of the five worst invasive ants. Recently it has been shown that one of the main compounds of its pygidial gland, iridomyrmecin, is used as a venom against competitors and enemies. Here, we explore the variability in the quantities of iridomyrmecin of individual workers, along a range of locations pertaining to both its native and invasive ranges, in order to know whether its venom could have contributed to the differential invasion success of European supercolonies. We specifically compared the amount of iridomyrmecin among supercolonies in the native range and among three invasive supercolonies: the Main supercolony (the most extended worldwide), the Corsican and the Catalonian supercolonies (both with a restricted distribution in Europe). Our main result is that the variability of the iridomyrmecin is very high. Looking at mean values, we found that the amount of iridomyrmecin of the Main supercolony was the lowest while the highest corresponded to the Corsican supercolony, with the Catalonian and the native range supercolonies having intermediate values. However, variability in the values within each supercolony was similar between supercolonies. This suggests that the success of a given invasive supercolony may not be explained by higher quantities of this defensive compound. Our results open the way for exploring the connection between defensive compounds and the invasion success of this global invader.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"33 1-2\",\"pages\":\"17 - 27\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-023-00381-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-023-00381-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-023-00381-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿根廷蚂蚁是五种最严重的入侵蚂蚁之一。最近有研究表明,其核核腺的主要化合物之一虹膜催泪素被用作对付竞争对手和敌人的毒液。在这里,我们探索了个体工蜂虹膜内膜素数量的变化,沿着其本地和入侵范围的一系列地点,以了解其毒液是否可能有助于欧洲超级殖民地的不同入侵成功。我们特别比较了天然范围内的超级殖民地和三个入侵超级殖民地:主要超级殖民地(世界范围内扩展最多),科西嘉和加泰罗尼亚超级殖民地(两者在欧洲的分布都受到限制)中虹膜霉素的数量。我们的主要结果是虹膜内膜素的变异性非常高。从平均值来看,我们发现Main超级群体的虹膜yrmecin含量最低,而科西嘉超级群体的虹膜yrmecin含量最高,加泰罗尼亚和本土超级群体的虹膜yrmecin含量处于中间水平。然而,每个超级群体内数值的变异性在超级群体之间是相似的。这表明,一个特定的入侵性超级群体的成功可能不能用大量的这种防御性化合物来解释。我们的研究结果为探索防御性化合物与这种全球入侵者入侵成功之间的联系开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges

The Argentine ant is one of the five worst invasive ants. Recently it has been shown that one of the main compounds of its pygidial gland, iridomyrmecin, is used as a venom against competitors and enemies. Here, we explore the variability in the quantities of iridomyrmecin of individual workers, along a range of locations pertaining to both its native and invasive ranges, in order to know whether its venom could have contributed to the differential invasion success of European supercolonies. We specifically compared the amount of iridomyrmecin among supercolonies in the native range and among three invasive supercolonies: the Main supercolony (the most extended worldwide), the Corsican and the Catalonian supercolonies (both with a restricted distribution in Europe). Our main result is that the variability of the iridomyrmecin is very high. Looking at mean values, we found that the amount of iridomyrmecin of the Main supercolony was the lowest while the highest corresponded to the Corsican supercolony, with the Catalonian and the native range supercolonies having intermediate values. However, variability in the values within each supercolony was similar between supercolonies. This suggests that the success of a given invasive supercolony may not be explained by higher quantities of this defensive compound. Our results open the way for exploring the connection between defensive compounds and the invasion success of this global invader.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1