{"title":"营养贮藏蛋白积累对大豆绿茎病易感性的评价","authors":"Jiuning Zhang, T. Shiraiwa, T. Katsube-Tanaka","doi":"10.1080/1343943X.2023.2196026","DOIUrl":null,"url":null,"abstract":"ABSTRACT Green stem disorder (GSD) is an important agronomical problem in soybean production because it delays leaf and stem senescence and complicates the harvest. However, a rapid and precise diagnosis of GSD has not yet been established. In this study, the effect of depodding on GSD and vegetative storage protein (VSP) accumulation was investigated in GSD-susceptible cultivar ‘Tachinagaha (Tc)’ and GSD-resistant experimental line ‘Touhoku 129 (Th)’ under two different (early and late) sowing dates in 2020 and 2021. Intact Tc plants showed relatively severe GSD at early sowing in 2020 and late sowing in 2021, whereas intact Th plants showed little GSD at both sowing dates and in both years. Meanwhile, depodding reproducibly induced GSD and increased stem weight for both Tc and Th. The relative VSP content peaked 14–21 days after R3 (DAR3) in intact plants and increased afterward in depodded plants. The relative VSP content differed at 28 DAR3 between intact and depodded plants, which was earlier than the timing when SPAD (soil plant analysis development) values differed, suggesting that VSP accumulation might be a better indicator of GSD than the SPAD value. The present study will contribute to the development of tools for diagnosing GSD. GRAPHICAL ABSTRACT","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"26 1","pages":"131 - 142"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the susceptibility to green stem disorder in soybeans [Glycine max (L.) Merr.] with vegetative storage protein accumulation\",\"authors\":\"Jiuning Zhang, T. Shiraiwa, T. Katsube-Tanaka\",\"doi\":\"10.1080/1343943X.2023.2196026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Green stem disorder (GSD) is an important agronomical problem in soybean production because it delays leaf and stem senescence and complicates the harvest. However, a rapid and precise diagnosis of GSD has not yet been established. In this study, the effect of depodding on GSD and vegetative storage protein (VSP) accumulation was investigated in GSD-susceptible cultivar ‘Tachinagaha (Tc)’ and GSD-resistant experimental line ‘Touhoku 129 (Th)’ under two different (early and late) sowing dates in 2020 and 2021. Intact Tc plants showed relatively severe GSD at early sowing in 2020 and late sowing in 2021, whereas intact Th plants showed little GSD at both sowing dates and in both years. Meanwhile, depodding reproducibly induced GSD and increased stem weight for both Tc and Th. The relative VSP content peaked 14–21 days after R3 (DAR3) in intact plants and increased afterward in depodded plants. The relative VSP content differed at 28 DAR3 between intact and depodded plants, which was earlier than the timing when SPAD (soil plant analysis development) values differed, suggesting that VSP accumulation might be a better indicator of GSD than the SPAD value. The present study will contribute to the development of tools for diagnosing GSD. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20259,\"journal\":{\"name\":\"Plant Production Science\",\"volume\":\"26 1\",\"pages\":\"131 - 142\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Production Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1343943X.2023.2196026\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2023.2196026","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Evaluation of the susceptibility to green stem disorder in soybeans [Glycine max (L.) Merr.] with vegetative storage protein accumulation
ABSTRACT Green stem disorder (GSD) is an important agronomical problem in soybean production because it delays leaf and stem senescence and complicates the harvest. However, a rapid and precise diagnosis of GSD has not yet been established. In this study, the effect of depodding on GSD and vegetative storage protein (VSP) accumulation was investigated in GSD-susceptible cultivar ‘Tachinagaha (Tc)’ and GSD-resistant experimental line ‘Touhoku 129 (Th)’ under two different (early and late) sowing dates in 2020 and 2021. Intact Tc plants showed relatively severe GSD at early sowing in 2020 and late sowing in 2021, whereas intact Th plants showed little GSD at both sowing dates and in both years. Meanwhile, depodding reproducibly induced GSD and increased stem weight for both Tc and Th. The relative VSP content peaked 14–21 days after R3 (DAR3) in intact plants and increased afterward in depodded plants. The relative VSP content differed at 28 DAR3 between intact and depodded plants, which was earlier than the timing when SPAD (soil plant analysis development) values differed, suggesting that VSP accumulation might be a better indicator of GSD than the SPAD value. The present study will contribute to the development of tools for diagnosing GSD. GRAPHICAL ABSTRACT
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.