{"title":"湿度对皮革电阻率的影响:数学模型","authors":"G. De Mey, I. Kazani, M. Hylli, P. Berberi","doi":"10.14502/tekstilec.65.2022097","DOIUrl":null,"url":null,"abstract":"A mathematical model is presented to simulate the electric resistivity of leather samples as a function of humidity. It will be shown that absolute and not relative humidity is the crucial parameter. The model assumes that the leather includes channels that can absorb water from the surrounding environment. This effect primarily determines the electric conductivity of the leather samples. The theoretical results from the model are quite closely in line with experimental measurements.","PeriodicalId":22555,"journal":{"name":"TEKSTILEC","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Humidity on the Electric Resistivity of Leather: Mathematical Modelling\",\"authors\":\"G. De Mey, I. Kazani, M. Hylli, P. Berberi\",\"doi\":\"10.14502/tekstilec.65.2022097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model is presented to simulate the electric resistivity of leather samples as a function of humidity. It will be shown that absolute and not relative humidity is the crucial parameter. The model assumes that the leather includes channels that can absorb water from the surrounding environment. This effect primarily determines the electric conductivity of the leather samples. The theoretical results from the model are quite closely in line with experimental measurements.\",\"PeriodicalId\":22555,\"journal\":{\"name\":\"TEKSTILEC\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEKSTILEC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14502/tekstilec.65.2022097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEKSTILEC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14502/tekstilec.65.2022097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Influence of Humidity on the Electric Resistivity of Leather: Mathematical Modelling
A mathematical model is presented to simulate the electric resistivity of leather samples as a function of humidity. It will be shown that absolute and not relative humidity is the crucial parameter. The model assumes that the leather includes channels that can absorb water from the surrounding environment. This effect primarily determines the electric conductivity of the leather samples. The theoretical results from the model are quite closely in line with experimental measurements.