纳米硒叶面施用对贯叶金丝桃部分次生代谢产物的影响。

Q3 Medicine Journal of Medicinal Plants Pub Date : 2022-03-01 DOI:10.52547/jmp.21.81.67
Mahmonir Rezaei Nazari, V. Abdossi, Fariba Zamani Hargalani, K. Larijani
{"title":"纳米硒叶面施用对贯叶金丝桃部分次生代谢产物的影响。","authors":"Mahmonir Rezaei Nazari, V. Abdossi, Fariba Zamani Hargalani, K. Larijani","doi":"10.52547/jmp.21.81.67","DOIUrl":null,"url":null,"abstract":"Background: Hypericum perforatum L. belongs to the Hypericaceae family has been considered due to its medicinal properties. The use of nanofertilizers can improve the yield and medicinal value of plants. Selenium has a protective role and a positive effect on the quantitative and qualitative characteristics of plants. Objective: Due to the importance of secondary metabolites of this plant and its economic value as well as the use of environmentally friendly fertilizers, this study was performed in the greenhouse of Shariati University of Tehran in 2019 in the form of a randomized complete block design with 3 replications. Methods: Nano selenium and selenate selenium were applied at concentrations of 6, 8, 10 and 12 mg/L in the rosette stage. Essential oil components were identified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results: The results showed that the highest amount of α -pinene with 22 % was obtained in the control treatment and also in the treatments of 6 and 8 mg/L sodium selenate with 21.6 % and 19.5 %. The maximum content of n -octane was in the foliar application of 12 mg/L nano selenium with 16 %. Maximum nonane was obtained with 18 % and 16 % of 12 and 10 mg/L sodium selenate, respectively. Conclusion: Sodium selenate treatments are recommended if the purpose is producing normal hydrocarbon compounds.","PeriodicalId":16582,"journal":{"name":"Journal of Medicinal Plants","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The effect of nano selenium foliar application on some secondary metabolites of Hypericum perforatum L.\",\"authors\":\"Mahmonir Rezaei Nazari, V. Abdossi, Fariba Zamani Hargalani, K. Larijani\",\"doi\":\"10.52547/jmp.21.81.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Hypericum perforatum L. belongs to the Hypericaceae family has been considered due to its medicinal properties. The use of nanofertilizers can improve the yield and medicinal value of plants. Selenium has a protective role and a positive effect on the quantitative and qualitative characteristics of plants. Objective: Due to the importance of secondary metabolites of this plant and its economic value as well as the use of environmentally friendly fertilizers, this study was performed in the greenhouse of Shariati University of Tehran in 2019 in the form of a randomized complete block design with 3 replications. Methods: Nano selenium and selenate selenium were applied at concentrations of 6, 8, 10 and 12 mg/L in the rosette stage. Essential oil components were identified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results: The results showed that the highest amount of α -pinene with 22 % was obtained in the control treatment and also in the treatments of 6 and 8 mg/L sodium selenate with 21.6 % and 19.5 %. The maximum content of n -octane was in the foliar application of 12 mg/L nano selenium with 16 %. Maximum nonane was obtained with 18 % and 16 % of 12 and 10 mg/L sodium selenate, respectively. Conclusion: Sodium selenate treatments are recommended if the purpose is producing normal hydrocarbon compounds.\",\"PeriodicalId\":16582,\"journal\":{\"name\":\"Journal of Medicinal Plants\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jmp.21.81.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jmp.21.81.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11

摘要

背景:贯叶金丝桃属金丝桃科植物,因其具有一定的药用价值而被人们所重视。纳米肥料的使用可以提高植物的产量和药用价值。硒具有保护作用,对植物的数量和质量特性有积极影响。目的:由于该植物次级代谢产物的重要性及其经济价值,以及使用环保肥料,本研究于2019年在德黑兰Shariati大学的温室中以随机完全区组设计的形式进行,共3次重复。方法:在莲座期分别以6、8、10和12 mg/L的浓度施用纳米硒和硒酸硒。采用气相色谱(GC)和气相色谱-质谱(GC-MS)对精油成分进行了鉴定。结果:对照组和6、8mg/L硒酸钠组α-蒎烯含量最高,分别为22%、21.6%和19.5%。正辛烷含量最高的是12mg/L纳米硒(16%)的叶面施用。12和10mg/L硒酸钠的含量分别为18%和16%,可获得最大壬烷值。结论:如果目的是生产正常的碳氢化合物,建议使用硒酸钠治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of nano selenium foliar application on some secondary metabolites of Hypericum perforatum L.
Background: Hypericum perforatum L. belongs to the Hypericaceae family has been considered due to its medicinal properties. The use of nanofertilizers can improve the yield and medicinal value of plants. Selenium has a protective role and a positive effect on the quantitative and qualitative characteristics of plants. Objective: Due to the importance of secondary metabolites of this plant and its economic value as well as the use of environmentally friendly fertilizers, this study was performed in the greenhouse of Shariati University of Tehran in 2019 in the form of a randomized complete block design with 3 replications. Methods: Nano selenium and selenate selenium were applied at concentrations of 6, 8, 10 and 12 mg/L in the rosette stage. Essential oil components were identified using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results: The results showed that the highest amount of α -pinene with 22 % was obtained in the control treatment and also in the treatments of 6 and 8 mg/L sodium selenate with 21.6 % and 19.5 %. The maximum content of n -octane was in the foliar application of 12 mg/L nano selenium with 16 %. Maximum nonane was obtained with 18 % and 16 % of 12 and 10 mg/L sodium selenate, respectively. Conclusion: Sodium selenate treatments are recommended if the purpose is producing normal hydrocarbon compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Plants
Journal of Medicinal Plants Medicine-Complementary and Alternative Medicine
CiteScore
1.60
自引率
0.00%
发文量
0
期刊介绍: The Journal of Medicinal Plants is published quarterly. This journal contains articles in the fields of basic and clinical sciences related to medicinal plants including pharmacognosy, basic and clinical pharmacology, basic and clinical toxicology, and pharmacology.
期刊最新文献
Medicinal Plants: Their Response to Abiotic Stress Isolation of CYP72A154, a gene involved in glycyrrhizin biosynthesis pathway, in Glycyrrhiza glabra L. (Iranian licorice) Investigating the effects of different cultivation media and biological and mineral fertilizers on the yield and active ingredients of ginger medicinal plant (Zingiber officinale Rosc) The effect of methyl jasmonate on morpho-physiological and biochemical parameters and mineral contents in Satureja khuzistanica Jamzad under salinity stress Antimicrobial and antioxidant activities of the leaf extract of some cultivated Iranian licorice populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1