K. Katono, S. Macfadyen, C. Omongo, J. Colvin, J. Karungi, M. Otim
{"title":"乌干达木薯上烟粉虱(半翅目:粉虱科)SSA1田间种群的死亡因素","authors":"K. Katono, S. Macfadyen, C. Omongo, J. Colvin, J. Karungi, M. Otim","doi":"10.14411/EJE.2021.016","DOIUrl":null,"url":null,"abstract":"Natural death is a key determinant of a species population dynamics. Thus, a clear understanding of natural mortality factors aids the development of appropriate management strategies for insect pests. Cohort-based life tables were constructed to determine the sources and rates of mortality of fi eld populations of the pest, Bemisia tabaci Sub-Saharan Africa 1 (SSA1) on cassava in Uganda. Monthly cohorts (10 in total) were established separately for eggs and nymphs on two cassava genotypes with known levels of resistance to B. tabaci infestation (Alado alado and NAROCASS 1). Mortality was recorded using daily observations for the eggs and the different nymphal instars. The recorded mortality sources were disappearance (total removal of egg or nymph from the leaf), predation, parasitism (nymphs only), unknown death and inviability (eggs only). Median marginal mortality rate was highest for disappearance (0.355) followed by parasitism (0.058). The highest level of mortality occurred during the third nymph stage (55% on Alado alado) and only 12% of nymphs reached the adult stage. Irreplaceable mortality (Ic) was highest for disappearance followed by third instar parasitism. Key-factor analysis revealed a close resemblance of the curve for disappearance to that of total mortality coupled with the highest regression slopes: 0.896 for eggs and 0.725 for nymphs on NAROCASS 1. From these results, we conclude that disappearance and parasitism are the major mortality factors controlling B. tabaci SSA1 populations. Therefore, the development of interventions that focus on enhancing the levels of disappearance and third instar parasitism may lead to population-level reductions in B. tabaci SSA1. Further studies need to be conducted to understand the factors that contribute to the high mortality associated with disappearance.","PeriodicalId":11940,"journal":{"name":"European Journal of Entomology","volume":"118 1","pages":"148-158"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mortality factors acting on field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) SSA1 on cassava in Uganda\",\"authors\":\"K. Katono, S. Macfadyen, C. Omongo, J. Colvin, J. Karungi, M. Otim\",\"doi\":\"10.14411/EJE.2021.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural death is a key determinant of a species population dynamics. Thus, a clear understanding of natural mortality factors aids the development of appropriate management strategies for insect pests. Cohort-based life tables were constructed to determine the sources and rates of mortality of fi eld populations of the pest, Bemisia tabaci Sub-Saharan Africa 1 (SSA1) on cassava in Uganda. Monthly cohorts (10 in total) were established separately for eggs and nymphs on two cassava genotypes with known levels of resistance to B. tabaci infestation (Alado alado and NAROCASS 1). Mortality was recorded using daily observations for the eggs and the different nymphal instars. The recorded mortality sources were disappearance (total removal of egg or nymph from the leaf), predation, parasitism (nymphs only), unknown death and inviability (eggs only). Median marginal mortality rate was highest for disappearance (0.355) followed by parasitism (0.058). The highest level of mortality occurred during the third nymph stage (55% on Alado alado) and only 12% of nymphs reached the adult stage. Irreplaceable mortality (Ic) was highest for disappearance followed by third instar parasitism. Key-factor analysis revealed a close resemblance of the curve for disappearance to that of total mortality coupled with the highest regression slopes: 0.896 for eggs and 0.725 for nymphs on NAROCASS 1. From these results, we conclude that disappearance and parasitism are the major mortality factors controlling B. tabaci SSA1 populations. Therefore, the development of interventions that focus on enhancing the levels of disappearance and third instar parasitism may lead to population-level reductions in B. tabaci SSA1. Further studies need to be conducted to understand the factors that contribute to the high mortality associated with disappearance.\",\"PeriodicalId\":11940,\"journal\":{\"name\":\"European Journal of Entomology\",\"volume\":\"118 1\",\"pages\":\"148-158\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14411/EJE.2021.016\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14411/EJE.2021.016","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Mortality factors acting on field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) SSA1 on cassava in Uganda
Natural death is a key determinant of a species population dynamics. Thus, a clear understanding of natural mortality factors aids the development of appropriate management strategies for insect pests. Cohort-based life tables were constructed to determine the sources and rates of mortality of fi eld populations of the pest, Bemisia tabaci Sub-Saharan Africa 1 (SSA1) on cassava in Uganda. Monthly cohorts (10 in total) were established separately for eggs and nymphs on two cassava genotypes with known levels of resistance to B. tabaci infestation (Alado alado and NAROCASS 1). Mortality was recorded using daily observations for the eggs and the different nymphal instars. The recorded mortality sources were disappearance (total removal of egg or nymph from the leaf), predation, parasitism (nymphs only), unknown death and inviability (eggs only). Median marginal mortality rate was highest for disappearance (0.355) followed by parasitism (0.058). The highest level of mortality occurred during the third nymph stage (55% on Alado alado) and only 12% of nymphs reached the adult stage. Irreplaceable mortality (Ic) was highest for disappearance followed by third instar parasitism. Key-factor analysis revealed a close resemblance of the curve for disappearance to that of total mortality coupled with the highest regression slopes: 0.896 for eggs and 0.725 for nymphs on NAROCASS 1. From these results, we conclude that disappearance and parasitism are the major mortality factors controlling B. tabaci SSA1 populations. Therefore, the development of interventions that focus on enhancing the levels of disappearance and third instar parasitism may lead to population-level reductions in B. tabaci SSA1. Further studies need to be conducted to understand the factors that contribute to the high mortality associated with disappearance.
期刊介绍:
EJE publishes original articles, reviews and points of view on all aspects of entomology. There are no restrictions on geographic region or taxon (Myriapoda, Chelicerata and terrestrial Crustacea included). Comprehensive studies and comparative/experimental approaches are preferred and the following types of manuscripts will usually be declined:
- Descriptive alpha-taxonomic studies unless the paper is markedly comprehensive/revisional taxonomically or regionally, and/or significantly improves our knowledge of comparative morphology, relationships or biogeography of the higher taxon concerned;
- Other purely or predominantly descriptive or enumerative papers [such as (ultra)structural and functional details, life tables, host records, distributional records and faunistic surveys, compiled checklists, etc.] unless they are exceptionally comprehensive or concern data or taxa of particular entomological (e.g., phylogenetic) interest;
- Papers evaluating the effect of chemicals (including pesticides, plant extracts, attractants or repellents, etc.), irradiation, pathogens, or dealing with other data of predominantly agro-economic impact without general entomological relevance.