M. Smiljanić, B. Radjenovic, Ž. Lazić, M. Radmilović-Radjenović, Milena Rasljic-Rafajilovic, Katarina Cvetanovic-Zobenica, E. Milinković, Ana Filipović
{"title":"25 wt.% TMAX蚀刻硅微通道中集成障碍的可控排列","authors":"M. Smiljanić, B. Radjenovic, Ž. Lazić, M. Radmilović-Radjenović, Milena Rasljic-Rafajilovic, Katarina Cvetanovic-Zobenica, E. Milinković, Ana Filipović","doi":"10.2298/HEMIND200807005S","DOIUrl":null,"url":null,"abstract":"In this paper, fabrication of silicon microchannels with integrated obstacles by using 25 wt % tetramethylammonium hydroxide (TMAH) aqueous solution at the temperature of 80 o C is presented and analysed. We studied basic island patterns, which present union of two symmetrical parallelograms with the sides along predetermined crystallographic directions (2 . Acute angles of the parallelograms were smaller than 45 o . We have derived analytical relations for determining dimensions of the integrated obstacles. The developed etching technique provides reduction of the distance between the obstacles. Before the experiments, we performed simulations of pattern etching based on the level set method and presented evolution of the etched basic patterns for the predetermined crystallographic directions . Combination of basic patterns with sides along the and crystallographic directions is used to fabricate a matrix of two row of silicon obstacles in a microchannel. We obtained a good agreement between the experimental results and simulations. Our results enable simple and cost-effective fabrication of various complex microfluidic silicon platforms with integrated obstacles.","PeriodicalId":12913,"journal":{"name":"Hemijska Industrija","volume":"75 1","pages":"15-24"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt.% TMAX\",\"authors\":\"M. Smiljanić, B. Radjenovic, Ž. Lazić, M. Radmilović-Radjenović, Milena Rasljic-Rafajilovic, Katarina Cvetanovic-Zobenica, E. Milinković, Ana Filipović\",\"doi\":\"10.2298/HEMIND200807005S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, fabrication of silicon microchannels with integrated obstacles by using 25 wt % tetramethylammonium hydroxide (TMAH) aqueous solution at the temperature of 80 o C is presented and analysed. We studied basic island patterns, which present union of two symmetrical parallelograms with the sides along predetermined crystallographic directions (2 . Acute angles of the parallelograms were smaller than 45 o . We have derived analytical relations for determining dimensions of the integrated obstacles. The developed etching technique provides reduction of the distance between the obstacles. Before the experiments, we performed simulations of pattern etching based on the level set method and presented evolution of the etched basic patterns for the predetermined crystallographic directions . Combination of basic patterns with sides along the and crystallographic directions is used to fabricate a matrix of two row of silicon obstacles in a microchannel. We obtained a good agreement between the experimental results and simulations. Our results enable simple and cost-effective fabrication of various complex microfluidic silicon platforms with integrated obstacles.\",\"PeriodicalId\":12913,\"journal\":{\"name\":\"Hemijska Industrija\",\"volume\":\"75 1\",\"pages\":\"15-24\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hemijska Industrija\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/HEMIND200807005S\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemijska Industrija","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/HEMIND200807005S","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt.% TMAX
In this paper, fabrication of silicon microchannels with integrated obstacles by using 25 wt % tetramethylammonium hydroxide (TMAH) aqueous solution at the temperature of 80 o C is presented and analysed. We studied basic island patterns, which present union of two symmetrical parallelograms with the sides along predetermined crystallographic directions (2 . Acute angles of the parallelograms were smaller than 45 o . We have derived analytical relations for determining dimensions of the integrated obstacles. The developed etching technique provides reduction of the distance between the obstacles. Before the experiments, we performed simulations of pattern etching based on the level set method and presented evolution of the etched basic patterns for the predetermined crystallographic directions . Combination of basic patterns with sides along the and crystallographic directions is used to fabricate a matrix of two row of silicon obstacles in a microchannel. We obtained a good agreement between the experimental results and simulations. Our results enable simple and cost-effective fabrication of various complex microfluidic silicon platforms with integrated obstacles.
期刊介绍:
The Journal Hemijska industrija (abbreviation Hem. Ind.) is publishing papers in the field of Chemical Engineering (Transport phenomena; Process Modeling, Simulation and Optimization; Thermodynamics; Separation Processes; Reactor Engineering; Electrochemical Engineering; Petrochemical Engineering), Biochemical Engineering (Bioreactors; Protein Engineering; Kinetics of Bioprocesses), Engineering of Materials (Polymers; Metal materials; Non-metal materials; Biomaterials), Environmental Engineeringand Applied Chemistry. The journal is published bimonthly by the Association of Chemical Engineers of Serbia (a member of EFCE - European Federation of Chemical Engineering). In addition to professional articles of importance to industry, scientific research papers are published, not only from our country but from all over the world. It also contains topics such as business news, science and technology news, information on new apparatus and equipment, and articles on environmental protection.