具有越来越多参数的二部图模型的渐近理论

Pub Date : 2022-10-25 DOI:10.1002/cjs.11735
Yifan Fan, Binyan Jiang, Ting Yan, Yuan Zhang
{"title":"具有越来越多参数的二部图模型的渐近理论","authors":"Yifan Fan,&nbsp;Binyan Jiang,&nbsp;Ting Yan,&nbsp;Yuan Zhang","doi":"10.1002/cjs.11735","DOIUrl":null,"url":null,"abstract":"<p>Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized <math>\n <mrow>\n <mi>β</mi>\n </mrow></math>-, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11735","citationCount":"3","resultStr":"{\"title\":\"Asymptotic theory in bipartite graph models with a growing number of parameters\",\"authors\":\"Yifan Fan,&nbsp;Binyan Jiang,&nbsp;Ting Yan,&nbsp;Yuan Zhang\",\"doi\":\"10.1002/cjs.11735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized <math>\\n <mrow>\\n <mi>β</mi>\\n </mrow></math>-, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11735\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

关联网络包含一组参与者和一组事件,其中的边表示参与者和事件之间的关联关系。在此,我们引入了一类隶属关系网络模型来建模程度异质性,其中两组程度参数分别用于衡量行为者的活跃度和事件的受欢迎程度。我们发展了矩量法来推断度参数。我们建立了一个统一的理论框架,其中矩估计量的相合性和渐近正态性在参与者和事件的数量都趋于无穷时保持不变。我们将结果应用于几种常用的带加权边的模型,包括广义β模型、泊松模型和瑞利模型。我们还在泊松模型下进行了仿真和实际数据应用来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Asymptotic theory in bipartite graph models with a growing number of parameters

Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized β -, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1