渥太华河水动力学行为建模:利用数值模拟和机器学习的力量增强可预测性

IF 3.1 Q2 WATER RESOURCES Hydrology Pub Date : 2023-08-24 DOI:10.3390/hydrology10090177
Jean-Louis Cardi, A. Dussel, Clara Letessier, Isa Ebtehaj, S. Gumiere, H. Bonakdari
{"title":"渥太华河水动力学行为建模:利用数值模拟和机器学习的力量增强可预测性","authors":"Jean-Louis Cardi, A. Dussel, Clara Letessier, Isa Ebtehaj, S. Gumiere, H. Bonakdari","doi":"10.3390/hydrology10090177","DOIUrl":null,"url":null,"abstract":"The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and holds great importance for Canada’s people, economy, and collective history, both in the present and the future. The river has faced numerous floods in recent years due to climate change. The most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark reminder of how climate change impacts our environment. Considering the limitations of machine learning (ML) models, which heavily rely on historical data used during training, they may struggle to accurately predict such “non-experienced” or “unseen” floods that were not encountered during the training process. To tackle this challenge, our study has utilized a combination of numerical modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river flow discharge was generated using a numerical model, encompassing a wide range of potential future floods. This significantly improved the ML training process to generalize the accuracy of results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River: floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs, including the location of the desired cross-section, river slope, Manning roughness coefficient at different river sections (right, left, and middle), and river flow discharge. To establish practical models for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The proposed model’s exceptional performance demonstrates its reliability and practical applications for the study area.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability\",\"authors\":\"Jean-Louis Cardi, A. Dussel, Clara Letessier, Isa Ebtehaj, S. Gumiere, H. Bonakdari\",\"doi\":\"10.3390/hydrology10090177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and holds great importance for Canada’s people, economy, and collective history, both in the present and the future. The river has faced numerous floods in recent years due to climate change. The most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark reminder of how climate change impacts our environment. Considering the limitations of machine learning (ML) models, which heavily rely on historical data used during training, they may struggle to accurately predict such “non-experienced” or “unseen” floods that were not encountered during the training process. To tackle this challenge, our study has utilized a combination of numerical modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river flow discharge was generated using a numerical model, encompassing a wide range of potential future floods. This significantly improved the ML training process to generalize the accuracy of results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River: floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs, including the location of the desired cross-section, river slope, Manning roughness coefficient at different river sections (right, left, and middle), and river flow discharge. To establish practical models for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The proposed model’s exceptional performance demonstrates its reliability and practical applications for the study area.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10090177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10090177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

渥太华河流域是一个横跨安大略省和魁北克省的广阔地区,对加拿大的人民、经济和集体历史在现在和未来都具有重要意义。近年来,由于气候变化,这条河遭遇了多次洪水。最严重的洪水发生在2019年,超过了100年一遇的洪水,这清楚地提醒我们气候变化是如何影响我们的环境的。考虑到机器学习(ML)模型在很大程度上依赖于训练过程中使用的历史数据的局限性,它们可能很难准确预测训练过程中没有遇到的“未经历”或“看不见”的洪水。为了应对这一挑战,我们的研究结合了数值建模和ML来创建一种集成的方法。事实上,使用数值模型生成了一个全面的河流流量数据集,涵盖了未来各种潜在的洪水。这显著改进了ML训练过程,以推广结果的准确性。利用这个数据集,开发了一个新的ML模型,称为数据处理组方法的扩展框架(EFGMDH)。其目的是为决策者提供明确的方程,用于估计渥太华河的三个关键水动力特征:泛滥平原宽度、流速和河流流动深度。这些预测依赖于各种输入,包括所需横截面的位置、河流坡度、不同河段(右侧、左侧和中间)的曼宁粗糙度系数以及河流流量。为了建立渥太华河上述每一种水动力特征的实用模型,对不同的输入组合进行了测试,以确定最优化的输入组合。EFGMDH模型在整个训练和测试阶段都表现出了高精度,R2值超过0.99。所提出的模型的优异性能证明了其可靠性和在研究领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability
The Ottawa River Watershed is a vast area that stretches across Ontario and Quebec and holds great importance for Canada’s people, economy, and collective history, both in the present and the future. The river has faced numerous floods in recent years due to climate change. The most significant flood occurred in 2019, surpassing a 100-year flood event, and serves as a stark reminder of how climate change impacts our environment. Considering the limitations of machine learning (ML) models, which heavily rely on historical data used during training, they may struggle to accurately predict such “non-experienced” or “unseen” floods that were not encountered during the training process. To tackle this challenge, our study has utilized a combination of numerical modeling and ML to create an integrated methodology. Indeed, a comprehensive dataset of river flow discharge was generated using a numerical model, encompassing a wide range of potential future floods. This significantly improved the ML training process to generalize the accuracy of results. Utilizing this dataset, a novel ML model called the Expanded Framework of Group Method of Data Handling (EFGMDH) has been developed. Its purpose is to provide decision-makers with explicit equations for estimating three crucial hydrodynamic characteristics of the Ottawa River: floodplain width, flow velocity, and river flow depth. These predictions rely on various inputs, including the location of the desired cross-section, river slope, Manning roughness coefficient at different river sections (right, left, and middle), and river flow discharge. To establish practical models for each of the aforementioned hydrodynamic characteristics of the Ottawa River, different input combinations were tested to identify the most optimal ones. The EFGMDH model demonstrated high accuracy throughout the training and testing stages, achieving an R2 value exceeding 0.99. The proposed model’s exceptional performance demonstrates its reliability and practical applications for the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
期刊最新文献
An Integrated Framework to Assess the Environmental and Economic Impact of Fertilizer Restrictions in a Nitrate-Contaminated Aquifer Assessing the Performance of a Citizen Science Based Water Quality Monitoring Program for Nitrates Using Test Strips Implemented in the Medjerda Hydrosystem in Northern Tunisia Analysis of Anomalies Due to the ENSO and Long-Term Changes in Extreme Precipitation Indices Using Data from Ground Stations Human Activities Increased Microplastics Contamination in the Himalaya Mountains Spatial Estimation of Snow Water Equivalent for Glaciers and Seasonal Snow in Iceland Using Remote Sensing Snow Cover and Albedo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1