Ingvild Fladvad Størdal , Embla Vildalen Uleberg , Diress Tsegaye , Jonathan E. Colman
{"title":"海草栖息地的恢复:人工和天然沉积物对移植鳗草(Zostera marina)发育的影响","authors":"Ingvild Fladvad Størdal , Embla Vildalen Uleberg , Diress Tsegaye , Jonathan E. Colman","doi":"10.1016/j.aquabot.2023.103677","DOIUrl":null,"url":null,"abstract":"<div><p>Near-shore areas face multiple stressors, effects of climate change, coastal construction and contamination. Although capping the seabed in these areas with mineral masses can reduce the impact of legacy contaminants in sediment, it can also result in the loss of flora and sessile fauna, both of which are vital components of near-shore ecosystems. Eelgrass (<em>Zostera marina</em>) is essential to marine near-shore areas as it supports biodiversity and mitigates the effects of climate change. Therefore, it would be beneficial to modify the top layer of caps to facilitate the reestablishment of these ecosystems when capping near-shore areas. This study describes results from an in situ<em>,</em> six-month field experiment conducted to compare increase in leaf length over the growing season and survival of eelgrass transplanted in two commercially available substrates (Natural sand and Crushed stone) and indigenous sediment (i.e., indigenous control sediment) in a capping project in Horten Inner harbour, Norway. Similar leaf length increase was found in Natural sand and Indigenous control sediment, both significantly higher compared to Crushed stone substrate. Survival was highest in our case in the Indigenous control sediment (120 %), with no significant difference between Crushed stone (20 %) and Natural sand substrates (25 %). These findings emphasize the importance of selecting appropriate substrate for successful seagrass restoration.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"188 ","pages":"Article 103677"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restoration of seagrass habitats: Effects of artificial and natural sediments on the development of transplanted eelgrass (Zostera marina)\",\"authors\":\"Ingvild Fladvad Størdal , Embla Vildalen Uleberg , Diress Tsegaye , Jonathan E. Colman\",\"doi\":\"10.1016/j.aquabot.2023.103677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Near-shore areas face multiple stressors, effects of climate change, coastal construction and contamination. Although capping the seabed in these areas with mineral masses can reduce the impact of legacy contaminants in sediment, it can also result in the loss of flora and sessile fauna, both of which are vital components of near-shore ecosystems. Eelgrass (<em>Zostera marina</em>) is essential to marine near-shore areas as it supports biodiversity and mitigates the effects of climate change. Therefore, it would be beneficial to modify the top layer of caps to facilitate the reestablishment of these ecosystems when capping near-shore areas. This study describes results from an in situ<em>,</em> six-month field experiment conducted to compare increase in leaf length over the growing season and survival of eelgrass transplanted in two commercially available substrates (Natural sand and Crushed stone) and indigenous sediment (i.e., indigenous control sediment) in a capping project in Horten Inner harbour, Norway. Similar leaf length increase was found in Natural sand and Indigenous control sediment, both significantly higher compared to Crushed stone substrate. Survival was highest in our case in the Indigenous control sediment (120 %), with no significant difference between Crushed stone (20 %) and Natural sand substrates (25 %). These findings emphasize the importance of selecting appropriate substrate for successful seagrass restoration.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"188 \",\"pages\":\"Article 103677\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377023000621\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023000621","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Restoration of seagrass habitats: Effects of artificial and natural sediments on the development of transplanted eelgrass (Zostera marina)
Near-shore areas face multiple stressors, effects of climate change, coastal construction and contamination. Although capping the seabed in these areas with mineral masses can reduce the impact of legacy contaminants in sediment, it can also result in the loss of flora and sessile fauna, both of which are vital components of near-shore ecosystems. Eelgrass (Zostera marina) is essential to marine near-shore areas as it supports biodiversity and mitigates the effects of climate change. Therefore, it would be beneficial to modify the top layer of caps to facilitate the reestablishment of these ecosystems when capping near-shore areas. This study describes results from an in situ, six-month field experiment conducted to compare increase in leaf length over the growing season and survival of eelgrass transplanted in two commercially available substrates (Natural sand and Crushed stone) and indigenous sediment (i.e., indigenous control sediment) in a capping project in Horten Inner harbour, Norway. Similar leaf length increase was found in Natural sand and Indigenous control sediment, both significantly higher compared to Crushed stone substrate. Survival was highest in our case in the Indigenous control sediment (120 %), with no significant difference between Crushed stone (20 %) and Natural sand substrates (25 %). These findings emphasize the importance of selecting appropriate substrate for successful seagrass restoration.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.