Guojun Liu, Zhenhua Guo, Di Liu, H. Meng, Yuming Zheng, Xiuhua Zhao, L. Gu, Zhifeng Chen, Xingyong Chen, Manyu Li, Jinyan Sun, Zhancang Ma, Haijuan He, Xiaolong Yu, Fanghong Hu
{"title":"肠道菌群是否调节鹅的孵蛋?","authors":"Guojun Liu, Zhenhua Guo, Di Liu, H. Meng, Yuming Zheng, Xiuhua Zhao, L. Gu, Zhifeng Chen, Xingyong Chen, Manyu Li, Jinyan Sun, Zhancang Ma, Haijuan He, Xiaolong Yu, Fanghong Hu","doi":"10.1163/15707563-bja10059","DOIUrl":null,"url":null,"abstract":"\nDomestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.","PeriodicalId":7876,"journal":{"name":"Animal Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does gut microbiota regulate brooding in geese?\",\"authors\":\"Guojun Liu, Zhenhua Guo, Di Liu, H. Meng, Yuming Zheng, Xiuhua Zhao, L. Gu, Zhifeng Chen, Xingyong Chen, Manyu Li, Jinyan Sun, Zhancang Ma, Haijuan He, Xiaolong Yu, Fanghong Hu\",\"doi\":\"10.1163/15707563-bja10059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nDomestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.\",\"PeriodicalId\":7876,\"journal\":{\"name\":\"Animal Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/15707563-bja10059\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15707563-bja10059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Domestic geese can reduce the amount of food intake when brooding. Because of the reduction in food intake, the total number of microorganisms in the gut is also reduced. Will this affect the goose’s thinking and make the goose stop brooding and eat food? We hypothesize that gut microbiota affects the brain through a brain–gut peptide and further regulates the breeding behavior of geese. In this study, we evaluated the microbiome related to the goose and transcription groups of brooding and egg production periods. The changes and differences in gut microbiota and gene expression of female geese in different reproduction periods were analyzed, and the possible interaction between them was explored. The results showed that the relative abundance of Faecalibacterium with a growth-promoting effect in the cecum was higher in the egg production group than in the brooding group. Microbial metabolic pathways with significant differences between the two groups were also enriched in the secondary functional groups with different gut microbiota metabolism. The downregulated genes in the egg production group were mainly related to energy metabolism, such as ATP synthesis-related genes. These results suggest that the brooding group’s gut microbiota can make relevant changes according to the reproduction stage of the goose. Since the amount of food taken in is reduced, it can promote the decomposition of the host’s fat. Simultaneously, insulin is also used to deliver messages to the brain; it is necessary to end the brooding behavior at an appropriate time and for eating to start.
期刊介绍:
Animal Biology publishes high quality papers and focuses on integration of the various disciplines within the broad field of zoology. These disciplines include behaviour, developmental biology, ecology, endocrinology, evolutionary biology, genomics, morphology, neurobiology, physiology, systematics and theoretical biology. Purely descriptive papers will not be considered for publication.
Animal Biology is the official journal of the Royal Dutch Zoological Society since its foundation in 1872. The journal was initially called Archives Néerlandaises de Zoologie, which was changed in 1952 to Netherlands Journal of Zoology, the current name was established in 2003.