星载激光雷达用于描述欧洲阿尔卑斯山不同尺度的森林结构

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2023-03-26 DOI:10.1002/rse2.330
Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf
{"title":"星载激光雷达用于描述欧洲阿尔卑斯山不同尺度的森林结构","authors":"Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf","doi":"10.1002/rse2.330","DOIUrl":null,"url":null,"abstract":"The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spaceborne\\n LiDAR\\n for characterizing forest structure across scales in the European Alps\",\"authors\":\"Lisa Mandl, A. Stritih, R. Seidl, C. Ginzler, Cornelius Senf\",\"doi\":\"10.1002/rse2.330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.330\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.330","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spaceborne LiDAR for characterizing forest structure across scales in the European Alps
The launch of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission in 2018 opens new opportunities to quantitatively describe forest ecosystems across large scales. While GEDI's height‐related metrics have already been extensively evaluated, the utility of GEDI for assessing the full spectrum of structural variability—particularly in topographically complex terrain—remains incompletely understood. Here, we quantified GEDI's potential to estimate forest structure in mountain landscapes at the plot and landscape level, with a focus on variables of high relevance in ecological applications. We compared five GEDI metrics including relative height percentiles, plant area index, cover and understory cover to airborne laser scanning (ALS) data in two contrasting mountain landscapes in the European Alps. At the plot level, we investigated the impact of leaf phenology and topography on GEDI's accuracy. At the landscape‐scale, we evaluated the ability of GEDIs sample‐based approach to characterize complex mountain landscapes by comparing it to wall‐to‐wall ALS estimates and evaluated the capacity of GEDI to quantify important indicators of ecosystem functions and services (i.e., avalanche protection, habitat provision, carbon storage). Our results revealed only weak to moderate agreement between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI uncertainties increasing with slope. At the landscape‐level, however, the agreement between GEDI and ALS was generally high, with R2 values ranging between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high avalanche protection, habitat provision, and carbon storage, highlighting the potential of GEDI for landscape‐scale analyses in the context of ecosystem dynamics and management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
Illuminating the Arctic: Unveiling seabird responses to artificial light during polar darkness through citizen science and remote sensing Near real‐time monitoring of wading birds using uncrewed aircraft systems and computer vision Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South‐Eastern Australia's black summer Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques Combining satellite and field data reveals Congo's forest types structure, functioning and composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1