开发了一种专门用于内燃机一维燃烧建模的壁面射流模型

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Spray and Combustion Dynamics Pub Date : 2021-09-01 DOI:10.1177/17568277211059073
A. Osorio, X. Tauzia, A. Maiboom
{"title":"开发了一种专门用于内燃机一维燃烧建模的壁面射流模型","authors":"A. Osorio, X. Tauzia, A. Maiboom","doi":"10.1177/17568277211059073","DOIUrl":null,"url":null,"abstract":"Diesel engines are becoming smaller as technology advances, which means that the fuel spray (or jet) interacts with the cylinder walls before combustion starts. Most fuel injection 1D models (especially for diesel fuel) do not consider this interaction. Therefore, a wall-jet sub-model was created on an Eulerian 1D diesel spray model. It was calibrated using data from the literature and validated with experimental data from a fuel spray impacting a plate in a constant volume combustion chamber. Results show that the spray moving along the wall has a higher mixing rate but less penetration as an equivalent free jet, therefore they show a similar volume. Spray-wall interaction creates a stagnation zone right before the impact with the wall, and friction of the jet with the wall is relatively low. All these phenomena are well captured by the wall-jet sub-model.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a wall jet model dedicated to 1D combustion modelling for CI engines\",\"authors\":\"A. Osorio, X. Tauzia, A. Maiboom\",\"doi\":\"10.1177/17568277211059073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diesel engines are becoming smaller as technology advances, which means that the fuel spray (or jet) interacts with the cylinder walls before combustion starts. Most fuel injection 1D models (especially for diesel fuel) do not consider this interaction. Therefore, a wall-jet sub-model was created on an Eulerian 1D diesel spray model. It was calibrated using data from the literature and validated with experimental data from a fuel spray impacting a plate in a constant volume combustion chamber. Results show that the spray moving along the wall has a higher mixing rate but less penetration as an equivalent free jet, therefore they show a similar volume. Spray-wall interaction creates a stagnation zone right before the impact with the wall, and friction of the jet with the wall is relatively low. All these phenomena are well captured by the wall-jet sub-model.\",\"PeriodicalId\":49046,\"journal\":{\"name\":\"International Journal of Spray and Combustion Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spray and Combustion Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277211059073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277211059073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的进步,柴油发动机变得越来越小,这意味着燃料喷雾(或喷射)在燃烧开始前与气缸壁相互作用。大多数燃料喷射1D模型(尤其是柴油燃料)没有考虑这种相互作用。因此,在欧拉一维柴油喷雾模型上建立了壁面射流子模型。它使用文献中的数据进行了校准,并使用恒定体积燃烧室中燃料喷雾冲击板的实验数据进行了验证。结果表明,作为等效自由射流,沿壁移动的喷雾具有较高的混合速率,但穿透较小,因此它们显示出相似的体积。喷雾-壁的相互作用在与壁碰撞之前产生了一个停滞区,并且射流与壁的摩擦相对较低。壁面射流子模型很好地捕捉到了所有这些现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a wall jet model dedicated to 1D combustion modelling for CI engines
Diesel engines are becoming smaller as technology advances, which means that the fuel spray (or jet) interacts with the cylinder walls before combustion starts. Most fuel injection 1D models (especially for diesel fuel) do not consider this interaction. Therefore, a wall-jet sub-model was created on an Eulerian 1D diesel spray model. It was calibrated using data from the literature and validated with experimental data from a fuel spray impacting a plate in a constant volume combustion chamber. Results show that the spray moving along the wall has a higher mixing rate but less penetration as an equivalent free jet, therefore they show a similar volume. Spray-wall interaction creates a stagnation zone right before the impact with the wall, and friction of the jet with the wall is relatively low. All these phenomena are well captured by the wall-jet sub-model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Spray and Combustion Dynamics
International Journal of Spray and Combustion Dynamics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.20
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...
期刊最新文献
Comparison of acoustic, optical, and heat release rate based flame transfer functions for a lean-burn injector under engine-like conditions Numerical study of the linear and non-linear damping in an acoustically forced cold-flow test rig with coupled cavities Intermittency transition to azimuthal instability in a turbulent annular combustor Network- and CFD/CAA-modelling of the high frequency flame response in multi-jet combustors Towards a momentum potential theory for reacting flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1