{"title":"美国科罗拉多州南路特县,扬帕河-科罗拉多河流域分水岭起源的地形图证据","authors":"E. Clausen","doi":"10.4236/ojg.2021.118017","DOIUrl":null,"url":null,"abstract":"Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows in a north direction away from the Colorado River (between the Park Range to the east and the Flat Tops region to the west) before turning in a west direction to reach the Unita Mountains where it joins the south-oriented Green River, which eventually joins the southwest-oriented Colorado River. Topographic maps show the Yampa-Colorado River drainage divide is asymmetric with steeper slopes leading to the Colorado River, barbed (south-oriented) tributaries leading to north-oriented Yampa River headwaters (especially near the Yampa River turn to the west), and evidence of a large north-to-south oriented diverging and converging channel complex that preceded present-day drainage routes. Map evidence is interpreted to mean massive south-oriented floods flowed through what are now north-oriented Yampa River headwaters valleys and that headward erosion of a deep west-oriented valley beheaded and reversed those south-oriented flood flow channels to create the north-oriented Yampa River headwaters and the Egeria Park area Yampa-Colorado River drainage divide seen today. Large south-oriented floods leading to the Colorado River (while regional uplift was occurring) are inconsistent with accepted Cenozoic geologic and glacial history paradigm predictions, but are predicted by a newly proposed Cenozoic geologic and glacial history paradigm in which a thick continental ice sheet created a deep “hole” by eroding underlying bedrock and also by causing crustal warping that raised the present-day northern Colorado east-west continental divide as immense south-oriented meltwater floods flowed across it.","PeriodicalId":63246,"journal":{"name":"地质学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Yampa River-Colorado River Drainage Divide Origin Determined from Topographic Map Evidence, Southern Routt County, Colorado, USA\",\"authors\":\"E. Clausen\",\"doi\":\"10.4236/ojg.2021.118017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows in a north direction away from the Colorado River (between the Park Range to the east and the Flat Tops region to the west) before turning in a west direction to reach the Unita Mountains where it joins the south-oriented Green River, which eventually joins the southwest-oriented Colorado River. Topographic maps show the Yampa-Colorado River drainage divide is asymmetric with steeper slopes leading to the Colorado River, barbed (south-oriented) tributaries leading to north-oriented Yampa River headwaters (especially near the Yampa River turn to the west), and evidence of a large north-to-south oriented diverging and converging channel complex that preceded present-day drainage routes. Map evidence is interpreted to mean massive south-oriented floods flowed through what are now north-oriented Yampa River headwaters valleys and that headward erosion of a deep west-oriented valley beheaded and reversed those south-oriented flood flow channels to create the north-oriented Yampa River headwaters and the Egeria Park area Yampa-Colorado River drainage divide seen today. Large south-oriented floods leading to the Colorado River (while regional uplift was occurring) are inconsistent with accepted Cenozoic geologic and glacial history paradigm predictions, but are predicted by a newly proposed Cenozoic geologic and glacial history paradigm in which a thick continental ice sheet created a deep “hole” by eroding underlying bedrock and also by causing crustal warping that raised the present-day northern Colorado east-west continental divide as immense south-oriented meltwater floods flowed across it.\",\"PeriodicalId\":63246,\"journal\":{\"name\":\"地质学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"地质学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojg.2021.118017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"地质学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojg.2021.118017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Yampa River-Colorado River Drainage Divide Origin Determined from Topographic Map Evidence, Southern Routt County, Colorado, USA
Detailed topographic map evidence and a new Cenozoic geologic and glacial history paradigm are used to determine the previously unexplained Yampa River-Colorado River drainage divide origin. The Yampa River now flows in a north direction away from the Colorado River (between the Park Range to the east and the Flat Tops region to the west) before turning in a west direction to reach the Unita Mountains where it joins the south-oriented Green River, which eventually joins the southwest-oriented Colorado River. Topographic maps show the Yampa-Colorado River drainage divide is asymmetric with steeper slopes leading to the Colorado River, barbed (south-oriented) tributaries leading to north-oriented Yampa River headwaters (especially near the Yampa River turn to the west), and evidence of a large north-to-south oriented diverging and converging channel complex that preceded present-day drainage routes. Map evidence is interpreted to mean massive south-oriented floods flowed through what are now north-oriented Yampa River headwaters valleys and that headward erosion of a deep west-oriented valley beheaded and reversed those south-oriented flood flow channels to create the north-oriented Yampa River headwaters and the Egeria Park area Yampa-Colorado River drainage divide seen today. Large south-oriented floods leading to the Colorado River (while regional uplift was occurring) are inconsistent with accepted Cenozoic geologic and glacial history paradigm predictions, but are predicted by a newly proposed Cenozoic geologic and glacial history paradigm in which a thick continental ice sheet created a deep “hole” by eroding underlying bedrock and also by causing crustal warping that raised the present-day northern Colorado east-west continental divide as immense south-oriented meltwater floods flowed across it.