气候和土地利用变化下基于改进多步超前时变对冲规则的水库优化调度

IF 2.8 3区 环境科学与生态学 Q2 WATER RESOURCES Hydrological Sciences Journal-Journal Des Sciences Hydrologiques Pub Date : 2023-04-04 DOI:10.1080/02626667.2023.2196427
S. Thiha, A. Shamseldin, B. Melville
{"title":"气候和土地利用变化下基于改进多步超前时变对冲规则的水库优化调度","authors":"S. Thiha, A. Shamseldin, B. Melville","doi":"10.1080/02626667.2023.2196427","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study aims to optimize Yeywa Hydropower Reservoir (YHR) operation using the multi-step-ahead time-varying hedging (TVH) rule under climate change (CC) and land-use change (LUC) to improve summer power generation. The performance of three multi-objective algorithms – the Multi-objective Salp Swarm Algorithm (MOSSA), the Multi-objective Antlion Optimizer (MOALO) and the Non-dominated Sorting Whale Optimization Algorithm (NSOWA) – are compared. MOSSA provides the best solutions with a higher mean hypervolume in a shorter computation time, and it is utilized to optimize the TVH rules for four periods: monthly (TVH-1), quarterly (TVH-3), half-yearly (TVH-6) and yearly (TVH-12). The six-month-ahead TVH-6 rule and the five-month-ahead TVH-6 rule generate the highest summer power for the historical period (2011–2020) and the future period (2020–2059), respectively. The future decadal power generation is expected to be higher than the historical power generation. The future TVH-6 rule is more reliable and it has lower water deficits than the historical YHR operation rule.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal reservoir operation using the improved multi-step-ahead time-varying hedging rule under climate and land-use changes\",\"authors\":\"S. Thiha, A. Shamseldin, B. Melville\",\"doi\":\"10.1080/02626667.2023.2196427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study aims to optimize Yeywa Hydropower Reservoir (YHR) operation using the multi-step-ahead time-varying hedging (TVH) rule under climate change (CC) and land-use change (LUC) to improve summer power generation. The performance of three multi-objective algorithms – the Multi-objective Salp Swarm Algorithm (MOSSA), the Multi-objective Antlion Optimizer (MOALO) and the Non-dominated Sorting Whale Optimization Algorithm (NSOWA) – are compared. MOSSA provides the best solutions with a higher mean hypervolume in a shorter computation time, and it is utilized to optimize the TVH rules for four periods: monthly (TVH-1), quarterly (TVH-3), half-yearly (TVH-6) and yearly (TVH-12). The six-month-ahead TVH-6 rule and the five-month-ahead TVH-6 rule generate the highest summer power for the historical period (2011–2020) and the future period (2020–2059), respectively. The future decadal power generation is expected to be higher than the historical power generation. The future TVH-6 rule is more reliable and it has lower water deficits than the historical YHR operation rule.\",\"PeriodicalId\":55042,\"journal\":{\"name\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2023.2196427\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2196427","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究旨在利用气候变化(CC)和土地利用变化(LUC)下的多步超前时变对冲(TVH)规则对野洼水电站(YHR)运行进行优化,以提高夏季发电量。比较了多目标Salp Swarm算法(MOSSA)、多目标Antlion优化器(MOALO)和非支配排序鲸优化算法(NSOWA)三种多目标算法的性能。MOSSA在较短的计算时间内提供了较高的平均超容量的最佳解决方案,并用于优化四个周期的TVH规则:每月(TVH-1),季度(TVH-3),半年(TVH-6)和每年(TVH-12)。历史时段(2011-2020年)和未来时段(2020-2059年),提前6个月的TVH-6规则和提前5个月的TVH-6规则夏季发电量最高。未来十年发电量预计将高于历史发电量。未来的TVH-6规则比历史的YHR运行规则更可靠,亏水更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal reservoir operation using the improved multi-step-ahead time-varying hedging rule under climate and land-use changes
ABSTRACT This study aims to optimize Yeywa Hydropower Reservoir (YHR) operation using the multi-step-ahead time-varying hedging (TVH) rule under climate change (CC) and land-use change (LUC) to improve summer power generation. The performance of three multi-objective algorithms – the Multi-objective Salp Swarm Algorithm (MOSSA), the Multi-objective Antlion Optimizer (MOALO) and the Non-dominated Sorting Whale Optimization Algorithm (NSOWA) – are compared. MOSSA provides the best solutions with a higher mean hypervolume in a shorter computation time, and it is utilized to optimize the TVH rules for four periods: monthly (TVH-1), quarterly (TVH-3), half-yearly (TVH-6) and yearly (TVH-12). The six-month-ahead TVH-6 rule and the five-month-ahead TVH-6 rule generate the highest summer power for the historical period (2011–2020) and the future period (2020–2059), respectively. The future decadal power generation is expected to be higher than the historical power generation. The future TVH-6 rule is more reliable and it has lower water deficits than the historical YHR operation rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
11.40%
发文量
144
审稿时长
9.8 months
期刊介绍: Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate. Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS). Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including: Hydrological cycle and processes Surface water Groundwater Water resource systems and management Geographical factors Earth and atmospheric processes Hydrological extremes and their impact Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.
期刊最新文献
Potential assessment of calibration approaches using the SWAT hydrological model for streamflow and sediment yield for a large-scale catchment Explaining the groundwater salinity of hard-rock aquifers in semi-arid hinterlands using a multidisciplinary approach An assessment of small island hydrological research activity conducted in the Oceania region Spatiotemporal river–aquifer interactions of a large tropical dryland river with high anthropic intervention A priori selection of hydrological model structures in modular modelling frameworks: application to Great Britain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1