用于小型甲烷储存系统的ZrBDC基功能吸附剂

IF 2.8 4区 工程技术 Q2 CHEMISTRY, APPLIED Adsorption Science & Technology Pub Date : 2022-01-30 DOI:10.1155/2022/4855466
O. V. Solovtsova, I. Men’shchikov, A. Shkolin, A. Fomkin, E. Khozina, A. Shiryaev
{"title":"用于小型甲烷储存系统的ZrBDC基功能吸附剂","authors":"O. V. Solovtsova, I. Men’shchikov, A. Shkolin, A. Fomkin, E. Khozina, A. Shiryaev","doi":"10.1155/2022/4855466","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOF), potentially porous coordination structures, are envisioned for adsorption-based natural gas (ANG) storage, including mobile applications. The factors affecting the performance of the ANG system with a zirconium-based MOF with benzene dicarboxylic acid as a linker (ZrBDC) as an adsorbent were considered: textural properties of the adsorbent and thermal effect arising upon adsorption. The high-density ZrBDC-based pellets were prepared by mechanical compaction of the as-synthesized MOF powder at different pressures from 30 to 240 MPa at 298 K without a binder and mixed with polymer binders: polyvinyl alcohol (PVA) and carboxyl methylcellulose (CMC). The structural investigations revealed that the compaction of ZrBDC with PVA under 30 MPa was optimal to produce the ZrBDC-PVA adsorbent with more than a twofold increase in the packing density and the lowest degradation of the porous structure. The specific total and deliverable volumetric methane storage capacities of the ZrBDC-based adsorbents were evaluated from the experimental data on methane adsorption measured up to 10 MPa and within a temperature range from 253 to 333 K. It was measured experimentally that at 253 K, an 100 mL adsorption tank loaded with the ZrBDC-PVA pellets exhibited the deliverable methane storage capacity of 172 m3(NTP)/m3 when the pressure dropped from 10 to 0.1 MPa. The methane adsorption data for the ZrBDC powder and ZrBDC-PVA pellets were used to calculate the important thermodynamic characteristic of the ZrBDC/CH4 adsorption system—the differential molar isosteric heat of adsorption, which was used to evaluate the state thermodynamic functions: entropy, enthalpy, and heat capacity. The initial heats of methane adsorption in powdered ZrBDC evaluated from the experimental adsorption isosteres were found to be ~19.3 kJ/mol, and then these values in the ZrBDC/CH4 system decreased at different rates during adsorption. In contrast, the heat of methane adsorption onto the ZrBDC-PVA pellets increased from 19.4 kJ/mol to a maximum with a magnitude, width, and position depended on temperature, and then it fell. The behaviors of the thermodynamic state functions of the ZrBDC/CH4 adsorption system were interpreted as a variation in the state of adsorbed molecules determined by a ratio of CH4-CH4 and CH4-ZrBDC interactions. The heat of adsorption was used to calculate the temperature changes of the ANG systems loaded with ZrBDC powder and ZrBDC pellets during methane adsorption under adiabatic conditions; the maximum integrated heat of adsorption was found at 273 K. The maximum temperature changes of the ANG system with the ZrBDC materials during the adsorption (charging) process did not exceed 14 K that are much lower than those reported for the systems loaded with activated carbons. The results obtained are of direct relevance for designing the adsorption-based methane storage systems for the automotive industry, developing new gas-power robotics systems and uncrewed aerial vehicles.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ZrBDC-Based Functional Adsorbents for Small-Scale Methane Storage Systems\",\"authors\":\"O. V. Solovtsova, I. Men’shchikov, A. Shkolin, A. Fomkin, E. Khozina, A. Shiryaev\",\"doi\":\"10.1155/2022/4855466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOF), potentially porous coordination structures, are envisioned for adsorption-based natural gas (ANG) storage, including mobile applications. The factors affecting the performance of the ANG system with a zirconium-based MOF with benzene dicarboxylic acid as a linker (ZrBDC) as an adsorbent were considered: textural properties of the adsorbent and thermal effect arising upon adsorption. The high-density ZrBDC-based pellets were prepared by mechanical compaction of the as-synthesized MOF powder at different pressures from 30 to 240 MPa at 298 K without a binder and mixed with polymer binders: polyvinyl alcohol (PVA) and carboxyl methylcellulose (CMC). The structural investigations revealed that the compaction of ZrBDC with PVA under 30 MPa was optimal to produce the ZrBDC-PVA adsorbent with more than a twofold increase in the packing density and the lowest degradation of the porous structure. The specific total and deliverable volumetric methane storage capacities of the ZrBDC-based adsorbents were evaluated from the experimental data on methane adsorption measured up to 10 MPa and within a temperature range from 253 to 333 K. It was measured experimentally that at 253 K, an 100 mL adsorption tank loaded with the ZrBDC-PVA pellets exhibited the deliverable methane storage capacity of 172 m3(NTP)/m3 when the pressure dropped from 10 to 0.1 MPa. The methane adsorption data for the ZrBDC powder and ZrBDC-PVA pellets were used to calculate the important thermodynamic characteristic of the ZrBDC/CH4 adsorption system—the differential molar isosteric heat of adsorption, which was used to evaluate the state thermodynamic functions: entropy, enthalpy, and heat capacity. The initial heats of methane adsorption in powdered ZrBDC evaluated from the experimental adsorption isosteres were found to be ~19.3 kJ/mol, and then these values in the ZrBDC/CH4 system decreased at different rates during adsorption. In contrast, the heat of methane adsorption onto the ZrBDC-PVA pellets increased from 19.4 kJ/mol to a maximum with a magnitude, width, and position depended on temperature, and then it fell. The behaviors of the thermodynamic state functions of the ZrBDC/CH4 adsorption system were interpreted as a variation in the state of adsorbed molecules determined by a ratio of CH4-CH4 and CH4-ZrBDC interactions. The heat of adsorption was used to calculate the temperature changes of the ANG systems loaded with ZrBDC powder and ZrBDC pellets during methane adsorption under adiabatic conditions; the maximum integrated heat of adsorption was found at 273 K. The maximum temperature changes of the ANG system with the ZrBDC materials during the adsorption (charging) process did not exceed 14 K that are much lower than those reported for the systems loaded with activated carbons. The results obtained are of direct relevance for designing the adsorption-based methane storage systems for the automotive industry, developing new gas-power robotics systems and uncrewed aerial vehicles.\",\"PeriodicalId\":7315,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4855466\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/4855466","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

金属有机框架(MOF)是一种潜在的多孔配位结构,被设想用于基于吸附的天然气(ANG)储存,包括移动应用。考察了以苯二甲酸为连接剂(ZrBDC)为吸附剂的锆基MOF体系性能的影响因素:吸附剂的结构性能和吸附时产生的热效应。将合成的MOF粉末在298 K下,在30 ~ 240 MPa的不同压力下机械压实,并与聚乙烯醇(PVA)和羧甲基纤维素(CMC)等高分子粘结剂混合,制备了高密度zrbdc基微球。结构研究表明,ZrBDC与PVA在30 MPa的压实条件下最适合制备ZrBDC-PVA吸附剂,填料密度提高2倍以上,孔隙结构降解最低。在温度为253 ~ 333 K、温度为10 MPa的条件下,对zrbdc基吸附剂的甲烷吸附性能进行了评价。实验结果表明,在253 K时,负载ZrBDC-PVA颗粒的100 mL吸附槽在压力从10 MPa降至0.1 MPa时,甲烷的可输送储气量为172 m3 /m3。利用ZrBDC粉末和ZrBDC- pva球团的甲烷吸附数据,计算了ZrBDC/CH4吸附体系的重要热力学特性—微分摩尔等等吸附热,并利用微分摩尔等等吸附热评价了系统的状态热力学函数:熵、焓和热容。ZrBDC粉末对甲烷的初始吸附热为~19.3 kJ/mol,在ZrBDC/CH4体系中,吸附热以不同速率下降。相比之下,ZrBDC-PVA球团的甲烷吸附热从19.4 kJ/mol增加到最大值,其大小、宽度和位置取决于温度,然后下降。ZrBDC/CH4吸附体系的热力学状态函数行为被解释为吸附分子状态的变化由CH4-CH4和CH4-ZrBDC相互作用的比例决定。采用吸附热计算了在绝热条件下,负载ZrBDC粉末和ZrBDC球团的ANG体系在甲烷吸附过程中的温度变化;最大综合吸附热为273 K。ZrBDC材料对ANG系统在吸附(充电)过程中的最大温度变化不超过14 K,远低于负载活性炭的系统。研究结果对设计基于吸附的甲烷储存系统、开发新型气体动力机器人系统和无人驾驶飞行器具有直接意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZrBDC-Based Functional Adsorbents for Small-Scale Methane Storage Systems
Metal-organic frameworks (MOF), potentially porous coordination structures, are envisioned for adsorption-based natural gas (ANG) storage, including mobile applications. The factors affecting the performance of the ANG system with a zirconium-based MOF with benzene dicarboxylic acid as a linker (ZrBDC) as an adsorbent were considered: textural properties of the adsorbent and thermal effect arising upon adsorption. The high-density ZrBDC-based pellets were prepared by mechanical compaction of the as-synthesized MOF powder at different pressures from 30 to 240 MPa at 298 K without a binder and mixed with polymer binders: polyvinyl alcohol (PVA) and carboxyl methylcellulose (CMC). The structural investigations revealed that the compaction of ZrBDC with PVA under 30 MPa was optimal to produce the ZrBDC-PVA adsorbent with more than a twofold increase in the packing density and the lowest degradation of the porous structure. The specific total and deliverable volumetric methane storage capacities of the ZrBDC-based adsorbents were evaluated from the experimental data on methane adsorption measured up to 10 MPa and within a temperature range from 253 to 333 K. It was measured experimentally that at 253 K, an 100 mL adsorption tank loaded with the ZrBDC-PVA pellets exhibited the deliverable methane storage capacity of 172 m3(NTP)/m3 when the pressure dropped from 10 to 0.1 MPa. The methane adsorption data for the ZrBDC powder and ZrBDC-PVA pellets were used to calculate the important thermodynamic characteristic of the ZrBDC/CH4 adsorption system—the differential molar isosteric heat of adsorption, which was used to evaluate the state thermodynamic functions: entropy, enthalpy, and heat capacity. The initial heats of methane adsorption in powdered ZrBDC evaluated from the experimental adsorption isosteres were found to be ~19.3 kJ/mol, and then these values in the ZrBDC/CH4 system decreased at different rates during adsorption. In contrast, the heat of methane adsorption onto the ZrBDC-PVA pellets increased from 19.4 kJ/mol to a maximum with a magnitude, width, and position depended on temperature, and then it fell. The behaviors of the thermodynamic state functions of the ZrBDC/CH4 adsorption system were interpreted as a variation in the state of adsorbed molecules determined by a ratio of CH4-CH4 and CH4-ZrBDC interactions. The heat of adsorption was used to calculate the temperature changes of the ANG systems loaded with ZrBDC powder and ZrBDC pellets during methane adsorption under adiabatic conditions; the maximum integrated heat of adsorption was found at 273 K. The maximum temperature changes of the ANG system with the ZrBDC materials during the adsorption (charging) process did not exceed 14 K that are much lower than those reported for the systems loaded with activated carbons. The results obtained are of direct relevance for designing the adsorption-based methane storage systems for the automotive industry, developing new gas-power robotics systems and uncrewed aerial vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adsorption Science & Technology
Adsorption Science & Technology 工程技术-工程:化工
CiteScore
5.00
自引率
10.30%
发文量
181
审稿时长
4.5 months
期刊介绍: Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.
期刊最新文献
Partial Purification of Anthocyanins (Brassica oleracea var. Rubra) from Purple Cabbage Using Natural and Modified Clays as Adsorbent Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite Dual Role of Fe2+ in the Galena Flotation and Influence on Selective Separation Investigation of the Zeta Adsorption Model and Gas-Solid Adsorption Phase Transition Mechanism Using Statistical Mechanics at Gas-Solid Interfaces Sulphuric Acid-Modified Coal Fly Ash for the Removal of Rhodamine B Dye from Water Environment: Isotherm, Kinetics, and Thermodynamic Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1