{"title":"用于锂离子和锂硫电池应用的有前景的二维电极材料的计算设计","authors":"Ke Fan, Yuen Hong Tsang, Haitao Huang","doi":"10.1016/j.matre.2023.100213","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) and lithium-sulfur (Li–S) batteries are two types of energy storage systems with significance in both scientific research and commercialization. Nevertheless, the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries (such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries) remain the greatest challenge, while two-dimensional (2D) electrodes materials provide a solution because of their unique structural and electrochemical properties. In this article, from the perspective of <em>ab-initio</em> simulations, we review the design of 2D electrode materials for LIBs and Li–S batteries. We first propose the theoretical design principles for 2D electrodes, including stability, electronic properties, capacity, and ion diffusion descriptors. Next, classified examples of promising 2D electrodes designed by theoretical simulations are given<em>,</em> covering graphene, phosphorene, MXene, transition metal sulfides, and so on. Finally, common challenges and a future perspective are provided. This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"3 3","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications\",\"authors\":\"Ke Fan, Yuen Hong Tsang, Haitao Huang\",\"doi\":\"10.1016/j.matre.2023.100213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-ion batteries (LIBs) and lithium-sulfur (Li–S) batteries are two types of energy storage systems with significance in both scientific research and commercialization. Nevertheless, the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries (such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries) remain the greatest challenge, while two-dimensional (2D) electrodes materials provide a solution because of their unique structural and electrochemical properties. In this article, from the perspective of <em>ab-initio</em> simulations, we review the design of 2D electrode materials for LIBs and Li–S batteries. We first propose the theoretical design principles for 2D electrodes, including stability, electronic properties, capacity, and ion diffusion descriptors. Next, classified examples of promising 2D electrodes designed by theoretical simulations are given<em>,</em> covering graphene, phosphorene, MXene, transition metal sulfides, and so on. Finally, common challenges and a future perspective are provided. This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"3 3\",\"pages\":\"Article 100213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935823000629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935823000629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications
Lithium-ion batteries (LIBs) and lithium-sulfur (Li–S) batteries are two types of energy storage systems with significance in both scientific research and commercialization. Nevertheless, the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries (such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries) remain the greatest challenge, while two-dimensional (2D) electrodes materials provide a solution because of their unique structural and electrochemical properties. In this article, from the perspective of ab-initio simulations, we review the design of 2D electrode materials for LIBs and Li–S batteries. We first propose the theoretical design principles for 2D electrodes, including stability, electronic properties, capacity, and ion diffusion descriptors. Next, classified examples of promising 2D electrodes designed by theoretical simulations are given, covering graphene, phosphorene, MXene, transition metal sulfides, and so on. Finally, common challenges and a future perspective are provided. This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments.